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Abstract

A healthy diet is becoming increasingly relevant as recognizing dietary deficiencies often
leads to actionable results that can improve the individual’s overall health. However, to
identify areas of potential improvement, tracking food intake is necessary. Manual methods
have traditionally been used to perform this tracking, but these methods have a number of
downsides, such as inaccuracy and a high level of effort and motivation needed to manually
track intake. This is why novel solutions are required. Such solutions can efficiently
automate food tracking, thus facilitating dietary assessment. Due to the pervasiveness
of smartphones with built-in cameras, automating dietary assessment by recognizing food
and drink items from images that may not be of the best quality seems like a promising
approach to develop solutions that could reach a large portion of the population. There
have been multiple approaches presented for this problem, with deep learning—or more
specifically, deep neural networks—achieving the state of the art in the field.

This doctoral dissertation presents three solutions for food and drink image detection,
recognition, and segmentation using deep convolutional neural networks, which are a type
of deep neural networks mainly used for image processing. The first solution includes a
detection model to remove nonfood images from a self-acquired dataset, and an image
recognition model based on a novel deep neural network architecture, called NutriNet.
With it, a classification accuracy of 86.72% was achieved. The second solution is based on
fake food (food replicas), which is used in experimental research in behavioral nutrition.
Using an existing deep neural network architecture, an image segmentation model was
trained on a fake-food image dataset and it achieved an accuracy of 92.18%. The third
solution is based on the second one and it was submitted to a worldwide competition for
food image recognition, the Food Recognition Challenge. In the scope of this challenge,
an image segmentation model was trained and it achieved a precision of 59.2% on the
challenging competition dataset of real-world food and drink images, which ranked second
in the second round of the competition.

These solutions and results contributed to the development of the food image recogni-
tion field in recent years and they further validate the usage of deep convolutional neural
networks for this problem, as well as present a novel architecture and approach to input
data collection in the deep learning field. To the best of the author’s knowledge, they also
achieved multiple firsts: the NutriNet solution was the first to recognize images of drinks,
while the fake-food solution was the first to automatically recognize food replicas and also
the first to include a single deep neural network architecture for the joint segmentation
and classification of food images.
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Povzetek

Zdrava prehrana postaja čedalje pomembnejša, saj spoznanja glede pomanjkljivosti v pre-
hrani pogosto vodijo do zaključkov, s pomočjo katerih lahko posameznik izboljša svoje
zdravstveno stanje. Za prepoznavanje mogočih področij za izboljšave pa je potrebno be-
ležiti vnos hrane. Tradicionalno so bile za to uporabljene ročne metode, vendar so zanje
značilne številne pomanjkljivosti, kot sta nenatančnost ter visok nivo zahtevanega truda in
motivacije za ročno beleženje vnosa hrane. Zaradi tega so za bolj učinkovito beleženje po-
trebne nove rešitve, ki lahko avtomatizirajo ta postopek in s tem poenostavijo ocenjevanje
prehrane. Zaradi vseprisotnosti pametnih mobilnih telefonov z vgrajenimi fotoaparati je
avtomatizacija ocenjevanja prehrane s pomočjo razpoznavanja slik hrane in pijače, ki niso
nujno najboljše kakovosti, obetaven pristop za razvoj rešitev, ki lahko dosežejo visok delež
prebivalstva. Za reševanje tega problema je bilo predstavljenih več pristopov, najboljše
rezultate pa so dosegle rešitve, ki uporabljajo globoko učenje oziroma natančneje—globoke
nevronske mreže.

V tej doktorski disertaciji so predstavljene tri rešitve za zaznavanje, razpoznavanje in
segmentacijo slik hrane in pijače z uporabo globokih konvolucijskih nevronskih mrež. Te
so vrsta globokih nevronskih mrež, ki se večinoma uporabljajo za obdelovanje slik. Prva
rešitev vključuje model za zaznavanje slik, ki ne vsebujejo hrane, v samostojno pridobljeni
podatkovni zbirki slik ter model za razpoznavanje, ki temelji na novi arhitekturi globokih
nevronskih mrež, imenovani NutriNet. S to arhitekturo je bila dosežena 86,72 % klasifi-
kacijska točnost. Druga rešitev temelji na lažni hrani (replike hrane), ki se uporablja v
eksperimentalnih raziskavah prehranjevalnega vedenja. Z uporabo obstoječe arhitekture
globokih nevronskih mrež je bil naučen model za segmentacijo na podatkovni zbirki slik
lažne hrane, ki je dosegel 92,18 % točnost. Tretja rešitev temelji na drugi rešitvi in od-
dana je bila v sklopu svetovnega tekmovanja v razpoznavanju slik hrane Food Recognition
Challenge. V okviru tekmovanja je bil naučen model za segmentacijo, ki je dosegel 59,2 %
natančnost na zahtevni podatkovni zbirki tekmovanja, ki vsebuje slike hrane in pijače iz
resničnega sveta, s čimer je ta rešitev dosegla drugo mesto v drugi rundi tekmovanja.

Predstavljene rešitve in rezultati so v preteklih letih prispevali k razvoju področja
razpoznavanja slik hrane in dodatno potrjujejo smiselnost uporabe globokih konvolucijskih
nevronskih mrež za reševanje tega problema. Na področju globokega učenja je prispevek
predstavljenih rešitev nova arhitektura ter pristop k zbiranju vhodnih podatkov. Kolikor je
avtorju znano, so bile te rešitve tudi v več pogledih prve: rešitev, ki temelji na arhitekturi
NutriNet, je bila prva, ki je razpoznavala slike pijač, medtem ko je bila rešitev, ki temelji na
lažni hrani, prva, ki je samodejno razpoznavala replike hrane, in tudi prva, ki je vsebovala
enotno arhitekturo globokih konvolucijskih nevronskih mrež za skupno segmentacijo in
klasifikacijo slik hrane.
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Chapter 1

Introduction

1.1 Motivation

In recent years, more and more people are becoming aware of the importance of a healthy
lifestyle, a large part of which is a healthy diet. As individuals are trying to improve
the quality of their diet, it is necessary to first identify aspects of their diet that can be
improved. This can be done by analyzing and evaluating their current food intake, which
is referred to as dietary assessment.

In the past, dietary assessment was performed using manual methods. These methods
often require self-reporting by the individual and include approaches like nutrition ques-
tionnaires, 24-hour dietary recall, and others. Because they are performed manually, and
because they can require action by the individual, they are time-consuming and prone to
errors, as, for example, food quantity can be very challenging to assess accurately, and
individuals can lose motivation to constantly track every food or drink they ingest. As
a consequence of these challenges, dietary assessment was mostly utilized only by people
who had to perform it, such as by patients with conditions that necessitate a close analysis
of food intake.

A simpler and more straightforward approach with less potential for errors is thus
needed to improve this process. This is why research into automated food recognition
has recently become a popular area of research. There are multiple approaches to this
automation, with one of the most promising ones being food image recognition. This
particular approach aims to automatically provide nutritional values for different foods by
taking an image of a food or drink item and matching its name with food composition
databases. Since smartphones with built-in cameras are so prevalent, the barrier to entry
for using such solutions is very low. Consequently, this approach has the potential to
enable the development of applications that reach a large part of the general population.

1.2 Approach

The goal of food image recognition is to recognize food and drink items that are present
in an image. This is done by first assigning features to the items and then classifying
them into the appropriate food classes. Traditionally, this was performed using manually-
defined feature descriptors. There has been a large variety of manual methods presented
for food image recognition—these include multiple kernel learning [1], bag-of-features [2],
and pairwise local features [3], among others. The issue with manually-defined methods is
that they mostly achieve a low classification accuracy. This is due to the nature of food
items, which makes their recognition a very challenging computer vision problem.
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There are multiple reasons why it is difficult to accurately recognize food and drink
items [4]. Food items are often deformable, which means their appearance can vary sig-
nificantly from image to image. On the other hand, different food items can have a very
similar appearance, making them difficult to distinguish from one another. Additionally,
a large amount of visual information is lost in the preparation of a dish, and drink items
specifically contain little visual information that is useful for recognition—often only color,
quantity and container information. Finally, there is a very large number of different
foods and drinks, and even the same dish can have many different variations based on the
characteristics of the local cuisine.

The consequence of these challenges is that the state of the art in the food image
recognition research field was achieved by a method that automates the process of feature
definition. By doing that, it can automatically learn what features are optimal for the
differentiation of food and drink items. This method is deep learning, or deep neural
networks. These networks were inspired by the way in which the biological brains work,
and they are composed of layers of neurons. As the input image progresses through these
layers, the network learns more and more complex features—from simple features, such as
edges and shapes, to complex features, like the type of food. Deep neural networks allow
the training of models that automatically learn features from a set of input images. Due
to this, they are capable of recognizing complex objects, such as food, with a very high
accuracy, which is why they achieved the state of the art for multiple computer vision
problems [5].

Specifically, deep convolutional neural networks (DCNNs) are the most widely used
networks for the task of food image recognition. These networks mimic the visual model
of animals, thus trying to gain an understanding of the image in a similar way that ani-
mals do [6]. There are multiple types of layers typically found in DCNNs, with the most
distinctive being the convolutional layer, which contains learnable filters that aim to learn
local features of an image. DCNNs have been able to achieve promising results for food
image recognition [7]–[9]. In particular, they have been used in solutions that detect food
images [10], recognize food items [11], and segment food images [12], which refers to the
process of partitioning the food image into separate food classes, along with the back-
ground. Since the size and diversity of input datasets are crucial to the accuracy of trained
DCNN models, multiple food image datasets have been made publicly available [12]–[15],
which accelerated progress in the field.

However, most prior research in the field was still limited in its real-world applicability,
either due to the low classification accuracy or the limitations of the image datasets used.
Namely, the majority of solutions either used datasets, gathered in controlled environments,
or datasets that contain a low number of different food classes, or both, and to the best
of the author’s knowledge, there were no prior solutions that would be able to recognize
images of drinks. All of these issues mean that such solutions are not robust enough
to be deployed in real-world applications. This was the motivation behind the research,
presented in this dissertation. Each additional food class also means added complexity,
generally decreasing the overall classification accuracy of trained DCNN models. The goal
was thus also to research the possibility of developing a more accurate DCNN architecture
for food and drink image recognition.

1.3 Research Hypotheses

Two hypotheses were defined in the scope of this doctoral dissertation. These hypotheses
are listed below and further elaborated on in Chapter 5.
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1.3.1 First Hypothesis

To improve the classification accuracy of food and drink image recognition, a new deep
convolutional neural network architecture can be designed.

1.3.2 Second Hypothesis

A single deep convolutional neural network architecture can be used to automatically and
jointly perform the segmentation and classification of food and drink images.

1.4 Scientific Methods and Contributions

This doctoral dissertation includes three publications as the main part of the dissertation.
These publications are articles, which were published in international peer-reviewed impact
factor (IF) journals, and are as follows:

1. S. Mezgec and B. K. Seljak, “NutriNet: A deep learning food and drink image recog-
nition system for dietary assessment,” Nutrients, vol. 9, no. 7, p. 657, 2017 [4]. IF:
5.717, 111 citations (25 October 2021) [16].

2. S. Mezgec, T. Eftimov, T. Bucher, and B. K. Seljak, “Mixed deep learning and natural
language processing method for fake-food image recognition and standardization to
help automated dietary assessment,” Public Health Nutrition, vol. 22, no. 7, pp.
1193–1202, 2019 [17]. IF: 4.022, 24 citations (25 October 2021) [16].

3. S. Mezgec and B. K. Seljak, “Deep neural networks for image-based dietary assess-
ment,” Journal of Visualized Experiments, vol. 169, e61906, 2021 [18]. IF: 1.4, 0
citations (25 October 2021) [16].

To address the first hypothesis, multiple popular DCNN architectures were tested on
a self-acquired dataset of food and drink images. To improve the classification accuracy,
one of these architectures was taken as the basis for the development of a novel DCNN
architecture, called NutriNet. This architecture was then tested against the popular DCNN
architectures on the same dataset, as well as on a dataset of real-world images, and on a
publicly available food image dataset. The results are presented and analyzed in the first
publication [4].

For the second hypothesis, a dataset of fake-food images was first sourced. Fake food
(food replicas) is used to perform behavioral studies. To facilitate the analysis of the results
from these studies, a fake-food image recognition approach was developed. This included
using an existing DCNN architecture to train a model on the fake-food image dataset,
which segments the image into individual food and drink items and then classifies them.
The training and testing results, as well as the implications of automating the recognition of
food replicas in behavioral studies, are presented in the second publication [17]. In order
to perform food and drink image segmentation and classification on real food, another
approach was developed in the scope of the Food Recognition Challenge (FRC) [19], which
is an international competition for food image recognition. This approach is presented
in the third publication [18], and it was also used to implement a mobile application for
dietary assessment, which is described in Chapter 5.

The research work, as well as the writing of the articles themselves, for both the first
[4] and third publication [18], was performed by the author of this doctoral dissertation.
The dissertation author is therefore the first author of these publications, with the second
author being the dissertation supervisor, Prof. Barbara Koroušić Seljak, who oversaw the
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research and edited the article. As for the second publication [17]—the research work was
split into two parts: fake-food image recognition and linking the recognition results to food
composition databases. The first part was performed by the dissertation author, who is
also the first author of the publication, whereas the second part was performed by the
second author, Tome Eftimov. The third author, Tamara Bucher, provided the fake-food
image dataset, whereas the dissertation supervisor oversaw the research work. All authors
of that publication contributed to the writing and editing of the article.

In addition to the three publications that make up the main part of the dissertation, the
research work, presented in this dissertation, resulted in another article that was published
in an IF journal:

• N. V. Matusheski, A. Caffrey, L. Christensen, S. Mezgec, S. Surendran, M. F. Hjorth,
H. McNulty, K. Pentieva, H. M. Roager, B. K. Seljak, K. S. Vimaleswaran, M. Rem-
mers, and S. Péter, “Diets, nutrients, genes and the microbiome: Recent advances in
personalised nutrition,” British Journal of Nutrition, pp. 1–9, 2021 [20]. IF: 3.718,
3 citations (25 October 2021) [16].

The dissertation author’s research work resulted in the finalist selection for the 2019 DSM
Bright Science Award [21], along with a corresponding presentation at the 13th European
Nutrition Conference [22], and this publication summarizes the work by all four finalists.
Since the publication describes solutions that are already presented in the dissertation
publications, and because the dissertation author’s contribution was only one of the four
main parts of that article, it is not included in this dissertation. Finally, the research work
from this dissertation was also described in a conference paper [23].

1.5 Dissertation Structure

This doctoral dissertation is structured as follows: Chapter 2 contains the first of the
publications [4], listed in Section 1.4, Chapter 3 contains the second publication [17], and
Chapter 4 contains the third publication [18]. All three publications are included exactly
as they appear in their respective journals, each with its own page and section numbering,
abstract, and references. This is done to facilitate navigation through this dissertation.
As such, the List of Figures, Abbreviations, and References of this dissertation apply only
to the dissertation text itself, and not to the publications. Finally, Chapter 5 contains
the discussion portion of the dissertation, and Chapter 6 summarizes the dissertation and
gives final remarks.
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Chapter 2

NutriNet: A Deep Learning Food
and Drink Image Recognition
System for Dietary Assessment

The first goal of the conducted research work was to build upon prior results and findings
in the field and address their limitations, which were mainly a low classification accuracy
and a low number of recognizable food items, and consequently develop a mobile appli-
cation for dietary assessment by using an accurate and efficient DCNN model for food
image recognition as part of it. To train such a model, an extensive food image dataset
was needed. However, there were no suitable food image datasets that would satisfy the
necessary conditions of including a sufficient number of different food items, including any
drink items at all, and containing enough images for each individual food item.

A new dataset thus needed to be built, which was done by downloading food and drink
images from a list of 520 items using results from web searches. Since these queries usually
result in irrelevant images as well, this dataset needed to be cleaned. This was done by
acquiring a different dataset—one that contained food and drink images in one class, and
images of other objects in the second class. Using this dataset, a food/nonfood DCNN
model was trained. By running this food detection model on the first dataset, erroneous
results were removed from it. After that, data augmentation was performed on the dataset
to generate new image variations.

NutriNet, a novel DCNN architecture, was developed by modifying the popular AlexNet
architecture [24]. This was done with the goal of improving its classification accuracy, as
well as its training efficiency. NutriNet was tested on the aforementioned dataset against
AlexNet, GoogLeNet [25], and residual neural networks (ResNet) [26]. Additionally, the
performance of these architectures was tested on a small real-world food image dataset, as
well as on the publicly available University of Milano-Bicocca 2016 (UNIMIB2016) food
image dataset [12]. All results are included and discussed in the publication below.

Permission to include the publication “NutriNet: A deep learning food and drink image
recognition system for dietary assessment” [4] in this doctoral dissertation was confirmed
by the journal Nutrients in an email exchange from 7 June 2021.



nutrients

Article

NutriNet: A Deep Learning Food and Drink Image
Recognition System for Dietary Assessment

Simon Mezgec 1,* and Barbara Koroušić Seljak 2
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Abstract: Automatic food image recognition systems are alleviating the process of food-intake
estimation and dietary assessment. However, due to the nature of food images, their recognition is a
particularly challenging task, which is why traditional approaches in the field have achieved a low
classification accuracy. Deep neural networks have outperformed such solutions, and we present
a novel approach to the problem of food and drink image detection and recognition that uses a
newly-defined deep convolutional neural network architecture, called NutriNet. This architecture
was tuned on a recognition dataset containing 225,953 512× 512 pixel images of 520 different food and
drink items from a broad spectrum of food groups, on which we achieved a classification accuracy
of 86.72%, along with an accuracy of 94.47% on a detection dataset containing 130,517 images.
We also performed a real-world test on a dataset of self-acquired images, combined with images from
Parkinson’s disease patients, all taken using a smartphone camera, achieving a top-five accuracy
of 55%, which is an encouraging result for real-world images. Additionally, we tested NutriNet on
the University of Milano-Bicocca 2016 (UNIMIB2016) food image dataset, on which we improved
upon the provided baseline recognition result. An online training component was implemented to
continually fine-tune the food and drink recognition model on new images. The model is being used
in practice as part of a mobile app for the dietary assessment of Parkinson’s disease patients.

Keywords: NutriNet; deep convolutional neural networks; deep learning; food recognition;
food detection; drink recognition; drink detection; Parkinson’s disease

1. Introduction

As people are becoming increasingly aware of the importance of a healthy diet, the need for
automatic food and drink recognition systems has arisen. Not only can such systems provide the
automatic recognition of food and drink items, but they can also enable an estimation of their nutritional
values, making them especially useful for dietary assessment and planning, which is applicable
for patients with different dietary restrictions, as well as for healthy individuals by preventing
nutrition-related conditions.

The problem of food and drink image detection and recognition is challenging due to the nature
of food and drink items. Foods are typically deformable objects, which makes the process of defining
their structure difficult. Furthermore, some food types can have a high intra-class (similar foods look
very different) and low inter-class (different foods look very similar) variance, making the process
of specifying the food type even more challenging. The issue with drink recognition is that there is
only a limited amount of information that can be gained using images of drink items; an example of
such information is the drink’s color, whether the drink is well-lit, and the drink’s density. All of these

Nutrients 2017, 9, 657; doi:10.3390/nu9070657 www.mdpi.com/journal/nutrients
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obstacles make food and drink image detection and recognition a particularly challenging computer
vision problem.

We approached this problem using deep learning or deep neural networks [1]. Many problems
in computer vision require the definition of complex features that are very challenging and time
consuming to manually define. Deep learning alleviates this as it allows computational models
composed of multiple processing layers to automatically learn these features and represent the input
data with them. Deep learning models have substantially improved the best results in a variety of
research fields, computer vision being one of them [1]. Specifically, we are using deep convolutional
neural networks, which are a type of deep neural network that is inspired by the visual cortex of
animals, where the individual neurons react to overlapping regions in the visual field [2]. This makes
convolutional neural networks especially suitable for computer vision, as the goal of computer vision
systems is the same as that of animal vision systems: to gain an understanding of input images.

When an image is fed through a convolutional neural network, a series of operations is performed
on the image as data transitions through the network layers. The layer parameters are then adjusted in
each iteration, which is how the training is performed. Three types of layers are the most common in
convolutional neural networks: convolutional, fully-connected and pooling layers. Convolutional layers
contain learnable filters that are trained in such a way that they respond to certain features in the input
data; an example of learned filters is shown in Figure 1. Fully-connected layers, on the other hand,
compose output data from other layers to gain higher-level knowledge from it. The pooling layers
down-sample the input data, but since this layer type does not accept parameters, it is usually not
counted towards the total neural network layer depth.

Figure 1. Example filters by Krizhevsky et al. [3]. Because these filters were learned using the first
convolutional layer of the neural network, the represented features are simple, such as the edge
orientation and frequency (learned features become progressively more complex with each additional
convolutional layer). Reproduced with permission from Alex Krizhevsky, Advances in NIPS 25;
published by Curran Associates, Inc., 2012.

The structure of this paper is as follows. In Section 1.1, related work in the field of food image
detection and recognition is presented; in Section 2.1, our image datasets and their acquisition are
described; Section 2.2 contains information about NutriNet and other convolutional neural network
models that were tested, along with their training process; Section 2.3 describes how the online training
component was implemented; in Section 3, the training and testing results of the deep neural network
models are given; in Section 3.1, we present testing results of the NutriNet architecture on other
datasets, including a real-world image dataset that we built for this purpose; Section 4 contains the
discussion part of the research work; and Section 5 concludes the paper and gives an overview of the
work done, as well as possible future work.
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1.1. Related Work

While there have not been any dedicated drink image recognition systems, there have been
multiple approaches to food image recognition in the past, and we will briefly mention the most
important ones here. In 2009, an extensive food image and video dataset was built to encourage
further research in the field: the Pittsburgh Fast-Food Image Dataset (PFID), containing 4545 still
images, 606 stereo image pairs, 303 360◦ food videos and 27 eating videos of 101 different food items,
such as “chicken nuggets” and “cheese pizza” [4]. Unfortunately, this dataset focuses only on fast-food
items, not on foods in general. The authors provided the results of two baseline recognition methods
tested on the PFID dataset, both using an SVM (Support Vector Machine) classifier to differentiate
between the learned features; they achieved a classification accuracy of 11% with the color histogram
method and 24% with the bag-of-SIFT-features method. The latter method counts the occurrences of
local image features described by the popular SIFT (Scale-Invariant Feature Transform) descriptor [5].
These two methods were chosen based on their popularity in computer vision applications, but the
low classification accuracy showed that food image recognition is a challenging computer vision task,
requiring a more complex feature representation.

In the same year, a food image recognition system that uses the multiple kernel learning method
was introduced, which tested different feature extractors, and their combination, on a self-acquired
dataset [6]. This proved to be a step in the right direction, as the authors achieved an accuracy of
26% to 38% for the individual features they used and an accuracy of 61.34% when these features were
combined; the features include color, texture and SIFT information. Upon conducting a real-world test
on 166 food images taken with mobile phones, the authors reported a lower classification accuracy
of 37.35%, which was due to factors like occlusion, noise and additional items being present in the
real-world images. The fact that the combination of features performed better than the individual
features further hinted at the need for a more in-depth representation of the food images. Next year,
the pairwise local features method, which applies the specifics of food images to their recognition, was
presented [7]. This method analyzes the ingredient relations in the food image, such as the relations
between bread and meat in a sandwich, by computing pairwise statistics between the local features.
The authors performed an evaluation of their algorithm on the PFID dataset and achieved an accuracy
of 19% to 28%, depending on which measure they employed in the pairwise local features method.
However, they also noted that the dataset had narrowly-defined food classes, and after joining them
into 7 classes, they reported an accuracy of 69% to 78%. This further confirmed the limitations of food
image recognition approaches of that time: if a food image recognition algorithm achieved a high
classification accuracy, it was only because the food classes were very general (e.g., “chicken”).

In 2014, another approach was presented that uses an optimized bag-of-features model for food
image recognition [8]. The authors tested 14 different color and texture descriptors for this model
and found that the HSV-SIFT descriptor provided the best result. This descriptor describes the local
textures in all three color channels of the HSV color space. The model was tested on a food image
dataset that was built for the aims of the project Type 1 Diabetes Self-Management and Carbohydrate
Counting: A Computer Vision Based Approach (GoCARB) [9], in the scope of which they constructed a
food recognition system for diabetes patients. The authors achieved an accuracy of 77.80%, which was
considerably higher than previous approaches.

All of the previously-described solutions are based on manually-defined feature extractors that
rely on specific features, such as color or texture, to recognize the entire range of food images.
Furthermore, the images used in the recognition systems presented in these solutions were taken under
strict conditions, containing only one food dish per image and often perfectly cropped. The images
that contained multiple items were manually segmented and annotated, so the final inputs for these
hand-crafted recognition systems were always ideally-prepared images. The results from these research
works are therefore not indicative of general real-world performance due to the same problems with
real-world images as listed above.
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These issues show that hand-crafted approaches are not ideal for a task as complex as food image
recognition, where it seems the best approach is to use a complex combination of a large number
of features, which is why deep convolutional neural networks, a method that automatically learns
appropriate image features, achieved the best results in the field. Deep neural networks can also
learn to disregard surrounding noise with sufficient training data, eliminating the need for perfect
image cropping. Another approach for the image segmentation task is to train a neural network
that performs semantic segmentation, which directly assigns class labels to each region of the input
image [10,11]. Furthermore, deep neural networks can be trained in such a way that they perform both
object detection and recognition in the same network [12,13].

In 2014, Kawano et al. used deep convolutional neural networks to complement hand-crafted
image features [14] and achieved a 72.26% accuracy on the University of Electro-Communications
Food 100 (UEC-FOOD100) dataset that was made publicly available in 2012 [15]; this was the highest
accuracy on the dataset at that time. Also in 2014, a larger version of the UEC-FOOD100 dataset was
introduced, the University of Electro-Communications Food 256 (UEC-FOOD256), which contains 256
as opposed to 100 food classes [16]; while UEC-FOOD100 is composed of mostly Japanese food dishes,
UEC-FOOD256 expands on this dataset with some international dishes. At that time, another food
image dataset was made publicly available: the Food-101 dataset. This dataset contains 101,000 images
of 101 different food items, and the authors used the popular random forest method for the recognition
task, with which they achieved an accuracy of 50.76% [17]. They reported that while this result
outperformed other hand-crafted efforts, it could not match the accuracy that deep learning approaches
provided. This was further confirmed by the subsequently published research works, such as by
Kagaya et al., who tested both food detection and food recognition using deep convolutional neural
networks on a self-acquired dataset and achieved encouraging results: a classification accuracy of
73.70% for the recognition and 93.80% for the detection task [18]. In 2015, Yanai et al. improved
on the best UEC-FOOD100 result, again with deep convolutional neural networks, only this time,
with pre-training on the ImageNet dataset [19]. The accuracy they achieved was 78.77% [20]. A few
months later, Christodoulidis et al. presented their own food recognition system that uses deep
convolutional neural networks, and with it, they achieved an accuracy of 84.90% on a self-acquired
and manually-annotated dataset [21].

In 2016, Singla et al. used the famous GoogLeNet deep learning architecture [22], which is
described in Section 2.2, on two datasets of food images, collected using cameras and combined with
images from existing image datasets and social media. With a pre-trained model, they reported a
recognition accuracy of 83.60% and a detection accuracy of 99.20% [23]. Also in 2016, Liu et al. achieved
similarly encouraging results on the UEC-FOOD100, UEC-FOOD256 and Food-101 datasets by using
an optimized convolution technique in their neural network architecture [24], which allowed them to
reach an accuracy of 76.30%, 54.70% and 77.40%, respectively. Furthermore, Tanno et al. introduced
DeepFoodCam, which is a smartphone food image recognition application that uses deep convolutional
neural networks with a focus on recognition speed [25]. Another food image dataset was made publicly
available in that year: the University of Milano-Bicocca 2016 (UNIMIB2016) dataset [26]. This dataset
is composed of images of 1027 food trays from an Italian canteen, containing a total of 3616 food
instances, divided into 73 food classes. The authors tested a combined segmentation and recognition
deep convolutional neural network model on this dataset and achieved an accuracy of 78.30%. Finally,
in 2016, Hassannejad et al. achieved the current best classification accuracy values of 81.45% on the
UEC-FOOD100 dataset, 76.17% on the UEC-FOOD256 dataset and 88.28% on the Food-101 dataset [27].
All three results were obtained by using a deep neural network model based on the Google architecture
Inception; this architecture is the basis for the previously-mentioned GoogLeNet.

It seems that deep learning is a very promising approach in the field of food image recognition.
Previous deep learning research reported high classification accuracy values, thus confirming the
viability of the approach, but they focused on smaller food image datasets, often limited to 100 different
food items or less. Moreover, none of these solutions recognize drink images. In this paper, we will
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present our solution that addresses these issues. We developed a new deep convolutional neural
network architecture called NutriNet and trained it on images acquired from web searches for
individual food and drink items. With this architecture, we achieved a higher classification accuracy
than most of the results presented above and found that, on our recognition dataset, it performs better
than AlexNet, which is the deep learning architecture it is based on; the results are described in-depth
in Section 3. Additionally, we developed an online training component that automatically fine-tunes
the deep learning image recognition model upon receiving new images from users, thus increasing
the number of recognizable items and the classification accuracy over time. The online training is
described in Section 2.3.

By trying to solve the computer vision problem of recognizing food and drink items from images,
we are hoping to alleviate the issue of dietary assessment, which is why our recognition system
is integrated into the PD Nutrition application for the dietary assessment of Parkinson’s disease
patients [28], which is being developed in the scope of the project mHealth Platform for Parkinson’s
Disease Management (PD_manager) [29]. In practice, the system works in the following way:
Parkinson’s disease patients take an image of food or drink items using a smartphone camera, and our
system performs recognition using deep convolutional neural networks on this image. The result
is a food or drink label, which is then matched against a database of nutritional information, thus
providing the patients with an automatic solution for food logging and dietary assessment.

2. Materials and Methods

2.1. Food and Drink Image Datasets

An extensive image dataset is critical for a food and drink image recognition system because
it enables the learning of more general features and therefore helps combat overfitting, which is a
common occurrence in machine learning, where a model describes random noise instead of learning
generalizable knowledge. The goal was therefore to build a dataset that contains as many food
and drink items as possible and where each item is represented with as many images as possible.
Additionally, we also wanted to have images of foods and drinks that are local to the Central European
region, since that would yield better results in the final application of the dietary-assessment system.
This is because food and drink types vary by region, meaning that a localized image dataset offers a
more accurate representation of the foods and drinks that would be recognized in practice. However,
it is important to note that the entire data-preparation and model-training process, as well as the online
training component are not specific to images of Central European foods and drinks; images and class
labels could be provided for other foods and drinks and in other languages.

We first tried building the image recognition dataset using publicly-available images from
recipe-gathering websites. This seemed appropriate since popular recipe websites have a large number
of users, most of whom post not only the recipes themselves, but also images of the final product.
However, this approach had two crucial drawbacks: First, the only useful labels the recipes contained
were food categories (e.g., “meat dishes”, “vegetable dishes”, etc.), rather than specific dishes or
drinks. The web pages for specific recipes also contained the recipe name, but since there were no
naming rules or pre-defined dishes, the names were sometimes different for the same dish and very
similar for different types of dishes. This meant that the recognition result would have to be a very
general class, which contained very different food and drink items, making the recognition difficult.
Additionally, since the results would be so general, the usefulness of such a model is questionable.
Second, the resulting image dataset was too small to train a high-quality model: it contained less than
10,000 images because all of the images were taken from one recipe-gathering website. The reason
why only one website was used is that food classes vary substantially from website to website, and a
unified recipe image dataset was therefore impossible.

That is why we changed our approach and built the image dataset in a different way. Using existing
food and drink class labels from the PD Nutrition dietary-assessment system, a web image search was
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performed for each food and drink class, and the resulting images were saved locally. To achieve this,
we used the Google Custom Search API [30] inside a Python (Python Version 2.7.6 was used – Python
is developed by the Python Software Foundation, Beaverton, OR, USA [31]) script that reads the class
text labels and performs a Google image search for every label. Each class represents a food or drink
item, and the script creates a folder for every class and stores its top image results. We chose to save
100 images per item; this offered a suitable balance between image quality and quantity, as too few
images meant the dataset was not sufficiently large, and too many images meant saving a large number
of images that do not necessarily contain the searched food or drink item, since Google image search
returns the best results first. All of the images that we acquired are freely downloadable online and are
labeled as either “Creative Commons Public Domain” or “Creative Commons No Derivatives”.

As a result, this recognition dataset we built had 520 food and drink image classes of 100 images each.
However, due to the nature of web image searches, some results included irrelevant and low-quality
images, as well as duplicate images. This meant that, in order to improve the overall dataset quality,
images like that needed to be removed. This was done using a deep convolutional neural network
model for image detection, by which we are referring to the process of classifying an image as either
a food or drink image or as an image that contains anything else, similar to Kagaya et al. [18].
The detection model is described in Section 2.2.

To train a model like that, a secondary image dataset needed to be built, one that contains food and
drink images in one class and images of everything else in the other, which is similar to how Singla et al.
structured their detection dataset [23]. This was done by merging the previously-acquired recipe image
dataset, which includes images of foods, and also some drinks, and the ImageNet dataset [19]. Using
another Python script, images, labeled as food or drink items, were downloaded from the ImageNet
dataset, as well as a random subset of all of the other images in the dataset. The entire ImageNet
dataset was not saved due to its size, which would significantly increase the training time for the food
and drink image detection deep learning model and the dataset would be very unbalanced since there
are many more images of other objects than there are of foods and drinks. Additionally, to further
reduce the dataset imbalance and gain some rotational invariance, all of the food and drink images
were rotated by 90◦, 180◦ and 270◦. These four variants per image were then saved: the resulting
dataset contains 130,517 images, of which 54,564 images are food/drink images and 75,953 images
contain other objects. This detection dataset is depicted in Figure 2.

Figure 2. Example images from the two classes of the food and drink image detection dataset, obtained
by merging recipe website images and a subset of the ImageNet dataset.

The food and drink image detection model was used on the recognition dataset, and images that
were labeled with “other” were removed. As the number of such images varies from class to class,
the classes became unbalanced as a consequence. Like with the detection dataset, the remaining images
were then rotated for a total of four variations per image, and three additional data-augmentation steps
were performed on the recognition dataset to increase the dataset size and gain further invariance;
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the images were flipped horizontally; random color noise was introduced to them; and they were
zoomed in so that 25% of all of the image borders were removed for each image. In total, there are
therefore 7 such variations per image.

The dataset was then divided into training, validation and testing subsets with a 70%/10%/20%
split. Additionally, two versions of the recognition dataset were created; they differ only in image
size, as the images were resized to 256 × 256 pixels for the first version and to 512 × 512 pixels for
the second version. The reason for having two versions of the same dataset is because our NutriNet
architecture, along with the other modified architectures we tested, accepts 512 × 512 pixel images,
whereas the pre-trained models accept 256× 256 pixel images; these models and the reasoning behind
using different-resolution images are described in Section 2.2. The detection dataset also contains
512× 512 pixel images, since NutriNet was used as the final detection model. Finally, all of the datasets
were transformed into the Lightning Memory-Mapped Database (LMDB) format [32] to enable a
higher throughput of input images through the deep learning framework that we used, which is also
described in Section 2.2.

Both versions of the recognition dataset contain 225,953 images of 520 different food and drink
items; example images from this dataset can be seen in Figure 3. The total size of the transformed
LMDB recognition dataset with larger images is 72 GB, whereas the size of the one with smaller images
is 23 GB. The size of the transformed detection dataset is 46 GB. The tools needed to download images
from the recognition dataset can be downloaded from the Jožef Stefan Institute website [33], and they
are also available and described in the Supplementary Materials; this includes the Python script
mentioned above, a complete list of all of the food and drink labels we used to create the recognition
dataset and a text file with instructions on how to use the script to download the images.

Figure 3. Example images from the final food and drink image recognition dataset, built from Google
image searches. Each one of these images represents a different food or drink class.

2.2. NutriNet and Other Deep Convolutional Neural Networks

After the image datasets were acquired, we developed a food and drink image detection and
recognition system that uses deep convolutional neural networks. A food or drink image is provided
to the recognition model as the input, and the output is a text class label describing the food or drink
item. The neural network classifies the input image into one class; if there are more food or drink
items present in the image, the most prevalent one is provided as the output. For the detection model,
the output is one of the two class labels: “food/drink” or “other”.
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We used four different deep convolutional neural network architectures: NutriNet, which is the
architecture developed in the scope of this research work, and three ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) winners – AlexNet (2012) [3], GoogLeNet (2014) [22] and Deep
Residual Networks (ResNet, 2015) [34]. This annual challenge is one of the most important image
recognition challenges, and its winners provide state-of-the-art approaches in the field. Since the
challenge tasks competitors with correctly-classifying images into 1000 classes, these three architectures
provided a suitable choice for training on food and drink images, as well as a comparison to the
NutriNet architecture.

AlexNet is the shallowest of the three pre-existing deep neural network architectures, having five
convolutional layers and three fully-connected layers. Being shallower, AlexNet learns less in-depth
features, but provides faster learning times. GoogLeNet is somewhat deeper than AlexNet, having
a total of 22 layers. For the purpose of this research work, we used the ResNet-152 variant of the
ResNet architecture, which has 152 layers and is therefore considerably deeper than the other two
ILSVRC-winning architectures. Despite this difference in layer depth, AlexNet accepts roughly the
same number of parameters as ResNet, approximately 60 million, whereas GoogLeNet only accepts
around four million parameters. This is due to the fact that, unlike AlexNet, GoogLeNet and ResNet
do not use fully-connected layers; since these layers contribute the largest proportion of parameters,
these two architectures are able to have a much higher number of layers without a considerable
increase in the number of parameters. All three of them use dropout, which is a technique to prevent
overfitting in neural network models by randomly excluding units in the neural network, along with
their connections, during the training process [35].

Our convolutional neural network architecture, NutriNet, is a modification of the AlexNet architecture.
The first difference is that while AlexNet, GoogLeNet and ResNet accept 256× 256 pixel images and take
a 227× 227 pixel image patch (224× 224 pixel patch for GoogLeNet and ResNet) for processing before the
first layer, NutriNet accepts 512× 512 pixel images and takes a 454× 454 pixel image patch for processing.
The reason for the difference in the input image size is that we used pre-trained models for the other
deep neural network architectures; the AlexNet, GoogLeNet and ResNet models were all pre-trained
on the previously-described ImageNet dataset, and these models accept 256× 256 pixel images. On the
other hand, we wanted to extract as much information from our dataset images as possible, which
is why we used higher resolution images for the NutriNet architecture. Additionally, we modified
the other architectures so that they accept 512 × 512 pixel images and included models using these
modified architectures in the training and testing process. This was done to gain an understanding of
whether a potential difference in classification accuracy between the ILSVRC-winning architectures
and NutriNet is due to the higher-resolution images or due to the NutriNet architecture. All of the
results are presented in Section 3. The main reason an image patch is randomly cropped before the
first neural network layer is to gain some translational invariance [36].

The second difference is that NutriNet has an additional convolutional layer at the beginning
of the neural network compared to AlexNet, which means it has 6 convolutional layers in total.
This convolutional layer was added to gain additional knowledge about the features in the higher
resolution images. To test whether adding any further convolutional layers to the architecture would
yield better results, we also tested NutriNet with an extra convolutional layer added after the input
layer; we are calling this architecture NutriNet+. Lastly, as a consequence of the different input
image resolutions and the additional convolutional layer, the dimensionality of the layer outputs is
different. Due to this difference in dimensionality at the first fully-connected layer, NutriNet contains
a considerably lower number of parameters than AlexNet: approximately 33 million. Figure 4 contains
a diagram of the image classification process using the NutriNet architecture on an example image
from the recognition dataset.

Using the aforementioned architectures, multiple network training parameters were defined and
tested: solver type, learning rate, number of epochs and batch size. The solver type determines the
method that minimizes the loss function, which is the primary quality measure in the neural network
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training process. The learning rate defines the rate with which the neural network’s parameters are
being changed during training: higher learning rates speed up the training process, but can converge
to worse loss values than lower rates. The number of epochs is the number of times all of the training
images are fed through the neural network, while the batch size determines how many images are fed
through at the same time. The results of this testing are presented in Section 3.

Figure 4. Illustration of the NutriNet architecture used on an image from the recognition dataset with
a few example class labels as the output.

We used three different solvers: Stochastic Gradient Descent (SGD) [37], Nesterov’s Accelerated
Gradient (NAG) [38] and the Adaptive Gradient algorithm (AdaGrad) [39]. All three solvers perform
updates on the neural network parameters: SGD performs a parameter update for each training sample,
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and both NAG and AdaGrad represent upgrades to this approach. NAG computes the approximation of
future parameters, thus gaining the ability to better predict local optima. AdaGrad, on the other hand,
adapts the learning rate to the parameters, which means it performs larger updates for infrequent and
smaller updates for frequent parameters [40].

The batch size was set according to the layer depth of the deep learning architecture that was
being trained, since deeper architectures take up more space on the GPU VRAM; this way, we ensured
that we used the largest possible batch size for each architecture. The idea behind this approach is that
by filling the GPU VRAM with training images, we minimize the amount of data transfer between
the GPU and the CPU RAM or storage drive, which decreases the amount of time the GPU is waiting
for new images and thus speeds up the training process. The base learning rate was adjusted with
respect to the batch size used, as per Krizhevsky [41]. For AlexNet, a batch size of 256 images and
a base learning rate of 0.02 was used; for NutriNet and NutriNet+, 128 images and a rate of 0.01;
for GoogLeNet, 64 images and a rate of 0.005; and for ResNet, 16 images and a rate of 0.00125. For the
AlexNet, GoogLeNet and ResNet model variants accepting 512× 512 pixel images, these values were
halved in order to fit them on the GPU VRAM. Additionally, a step-down policy with a step size of 30%
and γ = 0.1 was used for the learning rate of all of the models; these two parameters define the way
and speed with which the learning rate decreases over time, with the goal of optimal loss convergence.
All of the models were trained in 150 epochs and converged well before the final epoch.

Apart from using dropout, which is implemented in all of the tested deep learning architectures,
another technique was used to counter overfitting: the final model was chosen at the training epoch
when the loss on the validation subset stops decreasing. This signals the moment when the model
stops learning image features that generalize well and instead starts overfitting on the training data.
This model was then run on the testing subset once to assess its performance; the resulting accuracy
values were used to compare the different deep learning architectures and solvers we tested, which is
presented in Section 3.

For model training in the prototype phase, we used three tools: Caffe (NVIDIA’s fork of Caffe
Version 0.15.9 was used), which is a deep learning framework developed by the Berkeley Vision and
Learning Center [42]; the NVIDIA Deep Learning GPU Training System (NVIDIA DIGITS, Version
4.0 was used), which is built upon Caffe and is an interactive deep learning GPU training system that
provides a graphical interface and multiple feedback options while training a model [43]; and Torch
(Torch Version 7.0 was used), which is a deep learning framework, based on the Lua programming
language [44]. Torch was used to train the ResNet models; as such, we used a Torch implementation of
ResNet by the Facebook Artificial Intelligence Research team [45]. For all of the other models, we used
a combination of Caffe and DIGITS to perform the training. The reason why Torch was used for ResNet
model training is that the authors of ResNet used a modified version of Caffe to implement their
deep neural network architecture [46], which means that training these models was impossible in the
version of Caffe we used. For the online training of NutriNet, described in Section 2.3, only Caffe was
used, since the version of the DIGITS GUI we used does not provide scheduling for automatic model
training. We trained the models on GPUs because they train deep neural networks up to 13-times
faster than CPUs [47]. The GPU that was used in the prototyping phase was an NVIDIA GeForce
GTX TITAN X in a local computer and in the online fine-tuning phase an NVIDIA Tesla K80 in a
server environment.

2.3. Implementing an Online Training Component

The recognition dataset that we acquired and that is described in Section 2.1 contains 520 classes
of food and drink items from various food groups. Despite containing a wide variety of foods and
drinks, it still represents only a small subset of all of the available food and drink items, so the aim was
to develop a system that would automatically adapt and successfully recognize newly-added food
and drink types.
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The users, who are Parkinson’s disease patients or their carers in our case, classify a new image by
taking a photograph with their smartphones. Each time this happens, the photograph is automatically
uploaded and saved on our server, and the class label is then provided to the users by the recognition
model. Apart from the photograph, its correct class label is also uploaded; the users have the option to
correct the label provided by the deep learning model. A Python script is then run on a weekly basis
to check whether there are any new images added. If there are, all new images are processed in the
same way that the initial recognition dataset was processed, which is described in Section 2.1. If there
is a new food or drink class among the newly-uploaded class labels, this new class is added to the
dataset. Upon doing that, a Google image search is performed with the new class label as its search
query, and new images belonging to this class are added from the web search to complement the user
images. This is done so that a newly-added food or drink class contains as many images as possible,
which helps to alleviate overfitting. The entire process of adding images from a Google image search,
along with the use of the detection deep learning model to remove irrelevant search results is also
described in Section 2.1. Finally, the script fine-tunes the deep learning model on this updated image
dataset by adjusting the parameters in the neural network.

Caffe is used as the deep learning framework for the online training component, and it uses
special “prototxt” files for the definition of both the deep learning architecture and the training
parameters (solver type, number of epochs, etc.). One of these files, the one that defines the deep
learning architecture for the training process, needs to be updated prior to the fine-tuning process
when adding a new class. This consists of changing the number of outputs in the last neural network
layer to match the new number of classes and renaming this last layer to force Caffe to relearn it. This is
done automatically using the previously-mentioned Python script.

The updated version of the model is then made available on the server to download and perform local
image classification. For the purposes of PD Nutrition, the classifications of user images are performed
server-side to avoid the need to re-download the model for every new version. Figure 5 illustrates the
process of developing and automatically updating the deep learning model.

Figure 5. A diagram of the deep learning training process, including the online training component,
which keeps the model updated.

3. Results

As was mentioned in Section 2.2, four different deep learning architectures (AlexNet, GoogLeNet,
ResNet and NutriNet) and three solver types (SGD, NAG and AdaGrad) were tested for the recognition
task; AlexNet, GoogLeNet and ResNet were tested with pre-trained models, as well as with those that
accept 512 × 512 pixel images. NutriNet was additionally tested with an extra convolutional layer,
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and this architecture variant is called NutriNet+. Table 1 contains the results for all the tested models;
classification accuracy on the testing subset of the recognition dataset (last column in Table 1) was
chosen as the main quality measure for the final performance of the models. Figures 6 and 7 contain a
visual representation of the accuracy and loss values for all of the models. The pre-trained models
with the AdaGrad solver generally performed worse than their SGD and NAG counterparts, whereas
the 512× 512 models mostly performed better with the AdaGrad solver, which seems to indicate that
the learning rate selection is more important for 512× 512 models, as AdaGrad automatically adapts
the learning rate to the parameters. The ILSVRC-winning architectures achieved accuracy results
according to their layer depths: the deeper the architecture, the better it performed, which is true for
pre-trained, as well as 512× 512 models. When comparing pre-trained and 512× 512 models using
the same architectures, we can see that, on average, the switch to higher-resolution images caused an
increase in classification accuracy of 2.53% on the testing subset.

The best-performing model was the 512× 512 variant of ResNet with the NAG solver, achieving
a classification accuracy of 87.96%. NutriNet, on the other hand, achieved its best result with the
AdaGrad solver: 86.72%, which is 1.93% higher than its AlexNet counterpart. NutriNet also achieved
comparable results to GoogLeNet and was therefore outperformed only by ResNet. When comparing
NutriNet to NutriNet+, we can see that the extra convolutional layer did not yield any performance
increase, as NutriNet+ models achieved results that are almost identical to the results by NutriNet
models. With the exception of ResNet, all models achieved their highest accuracy on the training
subset. Finally, 512× 512 models generally recorded slightly worse results on the validation subset,
which is especially true for GoogLeNet, but better results on the testing subset than their pre-trained
counterparts, which seems to indicate a drop in the amount of overfitting. For the detection task,
NutriNet with the NAG solver was the best-performing model with a classification accuracy of 94.47%.

The training time varied from 11 to 135 h for the recognition models, depending on the deep
learning architecture used; ResNet models were by far the most time consuming to train, which
is due to the high layer depth of the architecture. The food and drink image detection model was
trained for 19 h using the same training parameters as the NutriNet recognition models. All of the
reported training times were achieved on the TITAN X GPU. While training is time consuming and
computationally expensive, classifying a single image with a deep learning model takes significantly
less time, making deployment possible on mobile and web applications.

3.1. Testing NutriNet on Other Datasets

To test how the trained models perform in practice, we built a small testing dataset containing
real-world food and drink images. Approximately one-third of the images were taken by us, and
two-thirds came from Parkinson’s disease patients. The dataset contains 200 images in total, spread
across 115 of the 520 classes from our recognition dataset. For testing, we used the best-performing
models for each architecture: AlexNet with the AdaGrad solver, GoogLeNet AdaGrad, ResNet NAG
and NutriNet AdaGrad, all trained on 512× 512 pixel images. AlexNet achieved a top-five accuracy
of 45%, GoogLeNet 51%, ResNet 58% and NutriNet 55%. The reason we chose to measure the top-five
accuracy is the way the model is used in practice: when a user classifies an image, the top five suggestions
are provided and the user then chooses the correct one, which is why a top-five accuracy result is more
representative of the actual recognition accuracy in practice. Figure 8 contains four distinct examples of
images from this real-world dataset and their corresponding output class labels from the NutriNet
model: the first image has a correct top-one classification; the second image has an incorrect top-one,
but a correct top-five classification; whereas the third image has an incorrect top-five classification.
The main reason this image was misclassified is that it contains three different food items, which
resulted in inaccurate predictions. The real-world dataset contains more such multi-item images, which
decreased the overall classification accuracy of all of the models we tested. While the first three example
images contain food items, the fourth image contains a drink item with a correct top-one classification.
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Table 1. Results of the deep learning model training on the recognition dataset. SGD, Stochastic
Gradient Descent; NAG, Nesterov’s Accelerated Gradient; AdaGrad, Adaptive Gradient algorithm;
ResNet, Deep Residual Networks.

Model Type Model Training Subset Validation Subset Testing Subset

Loss Accuracy Loss Accuracy Loss Accuracy

Pre-Trained

AlexNet SGD 0.17 89.35% 0.45 82.87% 0.46 82.73%
AlexNet NAG 0.19 89.32% 0.47 82.76% 0.47 82.75%

AlexNet AdaGrad 0.49 88.33% 0.47 82.31% 0.47 82.60%
GoogLeNet SGD 0.25 90.63% 0.53 83.49% 0.54 83.91%
GoogLeNet NAG 0.31 92.19% 0.54 83.55% 0.53 83.77%

Models GoogLeNet AdaGrad 0.35 90.62% 0.58 83.53% 0.58 83.06%
ResNet SGD 0.27 84.75% 0.34 85.60% 0.31 84.82%
ResNet NAG 0.34 84.82% 0.40 85.31% 0.35 85.03%

ResNet AdaGrad 0.26 85.23% 0.38 84.14% 0.37 83.49%

512 × 512

AlexNet SGD 0.41 89.76% 0.57 81.98% 0.44 84.73%
AlexNet NAG 0.32 89.89% 0.56 82.03% 0.43 84.03%

AlexNet AdaGrad 0.51 89.33% 0.60 80.20% 0.46 84.79%
GoogLeNet SGD 0.42 90.72% 0.79 80.64% 0.60 86.39%
GoogLeNet NAG 0.35 90.75% 0.78 80.66% 0.58 86.14%

GoogLeNet AdaGrad 0.48 87.50% 0.76 81.22% 0.48 86.59%
ResNet SGD 0.62 81.86% 0.36 85.34% 0.29 87.76%
ResNet NAG 0.45 84.82% 0.29 85.11% 0.26 87.96%

Models ResNet AdaGrad 0.50 83.76% 0.32 83.91% 0.33 86.53%
NutriNet SGD 0.46 88.59% 0.46 80.81% 0.27 86.64%
NutriNet NAG 0.44 88.53% 0.45 81.06% 0.27 86.54%

NutriNet AdaGrad 0.44 88.76% 0.46 80.77% 0.26 86.72%
NutriNet+ SGD 0.41 88.32% 0.45 81.01% 0.27 86.51%
NutriNet+ NAG 0.45 88.31% 0.45 81.08% 0.27 86.50%

NutriNet+ AdaGrad 0.42 88.35% 0.45 80.88% 0.28 86.38%

Figure 6. Visual representation of the classification accuracy results from Table 1. The number 512
at the end of some deep learning architecture names indicates a variant of the model that accepts
512 × 512 pixel images as input.
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Figure 7. Visual representation of the loss results from Table 1. Similarly to Figure 6, the number
512 indicates a model that accepts 512 × 512 pixel images as input.

Figure 8. Four example images from the real-world testing dataset and their corresponding class label
outputs from the NutriNet model.
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To further validate the results that NutriNet achieved on our datasets, we decided to test it on a
publicly-available dataset. For this purpose, we chose the most recently-published one: the UNIMIB2016
food image dataset [26]. As was mentioned in Section 1.1, this dataset contains 3616 images of 73 different
food items. Furthermore, since these images were collected in an Italian canteen, they contain foods
that are closest to the food items present in our datasets, making UNIMIB2016 the most suitable dataset
to test NutriNet on. To ensure that our results would be comparable with the baseline results, provided
by the authors of the UNIMIB2016 dataset, the dataset was pre-processed as the authors suggested:
food classes containing fewer than four instances were removed, leaving 65 classes, and the dataset was
split into training and testing subsets. Finally, since NutriNet does not perform image segmentation,
the ground-truth bounding-box information that is provided with the dataset was used to crop the
food items in the dataset images. Using the NutriNet AdaGrad model, which was pre-trained on our
recognition dataset, we performed fine-tuning on the UNIMIB2016 dataset, which took less than an
hour. When the authors of the dataset used the ground-truth bounding boxes to segment the food
images, they reported a recognition accuracy of 85.80% with their deep convolutional neural network;
NutriNet outperformed this result, as it achieved an accuracy of 86.39% on the UNIMIB2016 dataset.

4. Discussion

The main result of our research is two-fold: the newly-defined NutriNet deep convolutional neural
network architecture and the food and drink image recognition dataset, which contains a much larger
number of different food types than previous efforts in the field [4,6–8,14–18,20,21,23,24,26,27] and,
unlike these works, also contains a wide variety of drinks. Furthermore, since all of the images from
our recognition dataset are freely available online, the dataset can be replicated by other researchers
and even tailored to food and drink items local to their area. To facilitate this process, the tools we
used to download images from the recognition dataset were made available online on the Jožef Stefan
Institute website [33] and in the Supplementary Materials.

An additional difference between our solution and the majority of previous research is that
our food and drink image recognition system is being used in practice for the dietary assessment
of Parkinson’s disease patients. The accuracy results of NutriNet, presented in Section 3, are also
very promising and encouraging. We achieved a classification accuracy of 86.72% for the recognition
task, which is higher than the accuracy values reported by most of the other deep convolutional
neural network approaches in the field [14,18,20,21,23,24,26]. The detection model achieved an
accuracy of 94.47%, which is comparable to the detection results reported by other researchers [18,23].
However, since testing was performed on different datasets in these studies, the results are not directly
comparable with ours. On the other hand, testing on the publicly-available UNIMIB2016 dataset
showed that NutriNet outperforms the baseline method provided with the dataset [26]. Additionally, it
is important to note that the classification accuracy generally decreases with the increase in the number
of classes in the dataset, which makes our results even more encouraging, given that the number of
classes in our recognition dataset far exceeds the solutions mentioned above.

We attribute the better results of NutriNet compared to the AlexNet deep learning architecture to
the fact that it is able to gain additional knowledge from the input images as it learns a more complex
representation of the input images. NutriNet achieved results on our recognition dataset that are
comparable to the results by GoogLeNet, and of the tested architectures, only ResNet outperformed
it. When comparing the classification accuracy of the architectures on the real-world dataset, we can
observe that their order is the same as on the recognition dataset: from the lowest-performing AlexNet,
to GoogLeNet and NutriNet and, finally, ResNet. However, it is important to note that NutriNet
models are considerably faster to train than 512 × 512 ResNet models, with a training speed of about
five epochs per hour as opposed to ResNet’s one epoch per hour (AlexNet’s and GoogLeNet’s training
speeds with 512 × 512 pixel images are also slower, with 3.5 and one epoch per hour, respectively),
which is mainly due to the fact that reduced image batch sizes have to be used with the deeper
architectures. AlexNet, on the other hand, is slower than NutriNet because it accepts a larger number
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of parameters. This makes the NutriNet architecture viable for settings where training time is an
important part of the problem, such as in our case, where models are continually fine-tuned on a
weekly basis.

Due to the complexity of food and drink images, many of the previously-proposed methods for
food recognition achieved a low classification accuracy, and drink image recognition methods were
previously nonexistent. This is where deep learning comes in. Food and drink items have features that
are difficult to define, making automated feature definition a more appropriate approach. The results
of our research work further confirm this. However, despite using the dropout technique and selecting
the model at the point in the training process when the validation loss stops decreasing, overfitting
remains a problem with deep learning. In our case, the issue is that there are many different classes of
food and drink items, and because the classes are unbalanced, the rarer classes generate fewer images,
which introduces a greater risk of overfitting on the few images of that class that are in the dataset.

Overfitting could also be one of the reasons why the classification accuracy is lower on real-world
images than on images from the testing subset, with other possible reasons being added noise and
occlusion in real-world images and the fact that our recognition dataset could still contain some
irrelevant images: the dataset was cleaned with a food and drink image detection model that has
an accuracy of 94.47%, which means that the vast majority of images are correctly classified in the
recognition dataset, but not necessarily all of them. As a consequence, this could lower the classification
accuracy for real-world images. Finally, since we do not perform image segmentation, irrelevant items
present in the images make the recognition task more challenging.

A shortcoming of our food and drink recognition system is that the deep learning model is limited
to one output per image, which means that not every item gets successfully recognized in images
with multiple food or drink items; an example of such an image is the third real-world image in
Figure 8. This is true for all of the tested models and is another reason they performed worse on
the real-world dataset than on the recognition dataset. In the current state of the recognition system,
we are classifying 520 different food and drink items. While that number is considerably higher than
in publicly-available datasets in the field [4,15–17,26], it is still limited when compared to the number
of all of the possible foods and drinks. We address this issue by automatically adding new classes to
the dataset from the class labels users provide when trying to classify a new image.

5. Conclusions

In this paper, we present the food and drink image detection and recognition system that we
built, in the scope of which we developed a deep convolutional neural network architecture called
NutriNet in order to provide a higher classification accuracy for the recognition of food and drink
images from the 520-class dataset that we acquired using Google image searches, while keeping the
model training time low to enable faster fine-tuning. Our recognition system is used inside the PD
Nutrition dietary-assessment application for Parkinson’s disease patients, and it also incorporates
online training that automatically updates the model with new images and new food and drink classes.

The next step in our research will be to further modify the NutriNet architecture, which performed
well, but there is still room for improvement, especially on real-world images with added noise and
obstructions. Since there are many possibilities to alter the architecture, we will be looking to implement
optimization methods to automate this step, as well. As additional food and drink images are added
automatically to the dataset by Parkinson’s disease patients, we also hope to further address the problem
of overfitting. Additionally, to classify images with multiple food or drink items, a food and drink
detection model could be trained. Each of the outputs of this model would represent a separate food or
drink item that could then be used as the input to the existing recognition model. Another approach to
this problem would be to join the detection and recognition steps and perform both in a single deep
convolutional network; further testing would then be required to determine which of these approaches
would yield better results for the final goal of food and drink image recognition.
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Supplementary Materials: The tools needed to download images from the food and drink image recognition
dataset detailed in this paper are available online at http://www.mdpi.com/2072-6643/9/7/657/s1 and they
include the following files: “download_images.py” is a Python script used to download images from Google
image search queries; “readme.txt” is a guide describing the necessary steps to obtain the food and drink image
dataset using the aforementioned script; “slo_foods_drinks.txt” is a complete list of all of the food and drink class
labels we used to build the recognition dataset (the list is in Slovene).
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Chapter 3

Mixed Deep Learning and Natural
Language Processing Method for
Fake-Food Image Recognition and
Standardization to Help Automated
Dietary Assessment

The work, presented in Chapter 2, is limited to one food or drink item per image. This is
appropriate for simpler implementations of food image recognition solutions, but it requires
additional effort by the individual as it is necessary to take images that contain only one
food item. Since real-world images of foods and drinks rarely contain just one item, and
because the goal of automating dietary assessment is to reduce effort, this approach is not
optimal for implementing a practical application for dietary assessment.

This is why the next step in researching food image recognition was to develop a solution
that would not be limited to any number of food items per image. The biggest issue with
implementing such an approach is that there were no publicly available large-scale image
datasets at the time that would have multiple food or drink items annotated per image,
and building a dataset like that with web searches is also impossible.

Due to this lack of suitable image datasets of real food, a fake-food image recognition
system was developed. Food replicas are used to study meal composition, food choice, and
other behavioral aspects of diets [27]. Crucially, researchers take images of participants’
food choices. Because these replicas are visually very similar to real food, and because fake-
food images often contain a large number of food and drink items, they are well suited for
the recognition of multiple food and drink items per image. A fake-food image dataset was
sourced from the fake food buffet (FFB) research method [27] and annotated manually.
Similarly to prior work, data augmentation steps were performed on the dataset.

The FFB dataset was used to develop a solution that is able to segment fake-food images
on a pixel level. This solution was implemented by using an existing DCNN approach—fully
convolutional networks (FCNs) [28]. Specifically, the FCN-8s version [28] was used to train
a model on the FFB dataset, as this version is capable of segmenting the image at the finest
grain. The results of the training and testing process are included in the publication below.

Permission to include the publication “Mixed deep learning and natural language pro-
cessing method for fake-food image recognition and standardization to help automated di-
etary assessment” [17] in this doctoral dissertation was confirmed by the journal Public
Health Nutrition in an email exchange from 7 June 2021.
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Abstract
Objective: The present study tested the combination of an established and a
validated food-choice research method (the ‘fake food buffet’) with a new food-
matching technology to automate the data collection and analysis.
Design: The methodology combines fake-food image recognition using deep
learning and food matching and standardization based on natural language
processing. The former is specific because it uses a single deep learning network
to perform both the segmentation and the classification at the pixel level of the
image. To assess its performance, measures based on the standard pixel accuracy
and Intersection over Union were applied. Food matching firstly describes each of
the recognized food items in the image and then matches the food items with their
compositional data, considering both their food names and their descriptors.
Results: The final accuracy of the deep learning model trained on fake-food images
acquired by 124 study participants and providing fifty-five food classes was 92·18%,
while the food matching was performed with a classification accuracy of 93%.
Conclusions: The present findings are a step towards automating dietary
assessment and food-choice research. The methodology outperforms other
approaches in pixel accuracy, and since it is the first automatic solution for
recognizing the images of fake foods, the results could be used as a baseline for
possible future studies. As the approach enables a semi-automatic description of
recognized food items (e.g. with respect to FoodEx2), these can be linked to any
food composition database that applies the same classification and description
system.

Keywords
Fake food buffet

Food replica
Food image recognition

Food matching
Food standardization

Measuring dietary behaviour using traditional, non-auto-
mated, self-reporting technologies is associated with
considerable costs, which means researchers have been
particularly interested in developing new, automated
approaches. There is a clear need in dietary assessment and
health-care systems for easy-to-use devices and software
solutions that can identify foods, quantify intake, record
health behaviour and compliance, and measure eating
contexts. The aim of the present study was to test the
combination of an established and validated food-choice
research method, the ‘fake food buffet’ (FFB), with a new
food-matching technology to automate the data collection
and analysis.

The FFB was developed as an experimental method to
study complex food choice, meal composition and portion-
size choice under controlled laboratory conditions. The FFB
is a selection of very authentic replica-food items, from

which consumers are invited to choose. The FFB method
was validated by a comparison of meals served from real
and fake foods(1). The food portions served from the fake
foods correlated closely with the portions served from the
real foods(1). Furthermore, significant correlations between
the participants’ energy needs and the amounts served
were found in several studies(1–4). It has also been shown
that people who selected foods for an entire day from
an FFB were able to closely match their dietary
requirements(5).

In a typical FFB study, the experimenters choose fake
foods and set up a buffet. The participants receive
instructions, which can contain the experimental inter-
vention, and are then invited to select foods, choose
portions of foods to assemble meals(2,3) or even set a diet
for a day(5). The experimenter then analyses the
choice. Similar protocols and the same fake foods were
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used for experiments in different countries (i.e. Germany,
Switzerland, the UK and Australia). Currently, the FFB
study procedure still has several ‘analogue’ components.
After the participants select the meals, a photograph is
taken, the foods are separated manually, each food is
weighed, and the researcher calculates the nutritional
values for the selected fake foods. This process would
benefit from automation. All the consumer choices are
recorded and additional fake-food images are available for
the aims of the research.

The first step of the automation process is to recognize
the fake-food and fake-drink items present in these images.
Due to the nature not only of the fake-food and fake-drink
items, but also of food and drink items in general, this is a
particularly challenging computer vision problem. Differ-
entiating between different food or drink items (henceforth
‘food items’) can sometimes be challenging even for the
human eye. The issue is that different food items can
appear to be very similar and the same food item can
appear to be substantially different on different images
because of a variety of factors, such as image quality, illumi-
nation, the amount of noise present in the image, the way in
which the food item was prepared and served, etc.

The next step is to match the fake-food items recognized
in the image to food composition data, which are detailed
sets of information on the nutritionally important compo-
nents of foods, providing values for the energy and nutrients,
including protein, carbohydrates, fat, vitamins and minerals,
and for other important food components, such as fibre,
etc. The data are presented in food composition databases
(FCDB). The process of semi-automatic food matching
is a crucial part of an automated dietary assessment.

In the current paper, we present results of a study
performed with the objective to develop an automated
dietary assessment that consists of two main activities:
(i) automatically recognizing fake-food and fake-drink
items from photos; and (ii) automatically assigning
(matching) recognized items to their compositional data.
Using this approach, the dietary assessment can be per-
formed much more quickly and, in many cases, also more
accurately than if performed manually.

The paper proceeds as follows. In the next section we
present relevant work on the FFB, food image recognition
and food matching. Thereafter we introduce the methodo-
logy applied in the present study to an automated dietary
assessment. Next we show how this methodology was
applied to fake foods and present the results of the
evaluation. Finally, we discuss the results and present
some ideas for future work.

Relevant work

The fake food buffet
Replica-food models such as the Nasco food models(6)

have traditionally been used in dietary assessment as

portion-size estimation aids and for educational purposes.
However, only recently have food-replica models been
validated and used for experimental studies in food-choice
and consumer behaviour research(1). The FFB method has,
for example, been used to investigate environmental
influences such as plate size(3), vegetable variety(7,8) in
food choice, or the effect of the nutritional information and
labels on food choice for a single meal(2,9) or for an entire
day(5). Fake foods were also used to investigate health
perceptions(4,10) and social influences and attitudes to
food choices(11,12).

Meanwhile, the FFB is an established research tool
within several research facilities worldwide; research
institutions in Germany, Switzerland, the UK and Australia
are using a similar set of replica foods to address a variety
of research questions. However, to date the procedure of
carrying out an FFB experiment still involves several
manual steps, including identifying and quantifying the
foods selected by the study participants, and different
research laboratories use different FCDB to calculate the
theoretical nutrient contents of the fake foods. The dif-
ferences in the nutrient profile of the same food between
different nutrient databases in different countries might
reflect actual differences in the composition of these foods
in the different countries. Linking the fake foods to stan-
dardized nutrient contents (e.g. an EU database) might
remove certain country-specific information (e.g. related
to food processing). However, the standardization of the
nutrient content calculation would still greatly facilitate
international collaboration and the comparison of food
portions.

Food image recognition
Until recently, the approach favoured by most researchers
in the field of food image recognition was based on
manually defined feature descriptors(13–15). However,
because of the complexity of the features in food images,
this approach did not perform well.

Recently, deep learning, a fully automatic machine
learning approach, achieved state-of-the-art results in a
wide variety of computer vision problems and proved to
be most effective for the task of image recognition. It has
also been validated in the field of food image recognition
multiple times(16–23). However, to the best of our knowl-
edge, there are no previous solutions that would auto-
matically recognize drinks from images, and the number
of food classes in the data sets that have been used so far
is very limited – often up to 100 different food types or
less. This is why we have introduced an approach that
addresses both of these issues(24). It is a unique approach
due to how the food and drink image data set is built as
well as the custom deep learning network used. Using this
approach, we have achieved an accuracy of 86·72% on a
new data set containing 520 different food and drink items.
However, our approach, as well as most solutions listed
above, have a shortcoming: they are incapable of
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recognizing more than one food item per image. We
address this issue in the current paper as we are per-
forming pixel-level classification, which is not limited to
any specific number of recognized food items.

The research works described above classify food items
into food classes, which can then be linked to FCDB to
add compositional information. However, there is another
approach to this problem: perform food ingredient
recognition and try to directly recognize the food ingre-
dients from the image. This has been presented in a few
recent solutions by Chen et al.(25,26) and Salvador et al.(27),
which detail the process of recognizing ingredients from
food images and then linking them with recipes containing
those ingredients.

Food matching
Matching food items with compositional data can be per-
formed in two ways, by considering either the food
descriptors or the food names. Databases on food com-
position, consumption, allergens, etc. describe food items
with descriptors (terms and facets) defined by a classifi-
cation and indexing system. Several such systems exist
(e.g. FoodEx2(28), LanguaL(29)); however, many databases
are lacking food descriptors because defining them is a
time-consuming task. Therefore, matching food items from
different data sources by considering food names is a
relevant challenge. The problem of matching food with
compositional data through food names is that the same
food can have different food names within different data
sources (i.e. different FCDB)(30). This is because people
who express themselves in different ways or have unique
writing styles defined the food names. For example, the
food item name that results from the food image recog-
nition method depends on the person who developed the
method, while the food item name presented in the FCDB
depends on the person or company who performed the
nutrient analysis and then provided and stored the result.
To address this problem, in 2016 we developed a pro-
mising method for matching food items to their composi-
tional data using food names and text-similarity measures
applied at a word level, which was aimed at matching
food items to their compositional data(31). Meanwhile, we
have extended this method to classify and describe food
items considering both food names and food descriptors
that are semi-automatically assigned to the food items(32).

Methods

The fake food buffet
In the current study we used the image data from an FFB
experiment in which 124 participants were invited to serve
themselves lunch from a buffet with replica foods. Details
about the procedures of the experimental study are
described elsewhere(2). In total, 121 photographs were
used (two images were missing, one image was

incomplete) and out of the fifty-seven food classes, fifty-
five were matched (‘margarine’ was not present in any
images and ‘fish sticks’ were present in only one image,
which is not enough to train a deep learning model).

Fake-food image recognition
Food image recognition requires several steps to be per-
formed: image pre-processing, deep learning model
training, testing and validation. We are also performing
data augmentation in the pre-processing step, by which
we are referring to the process of expanding the original
image data set by generating additional variants of original
images, which is beneficial for deep learning methods as
they require as large a data set as possible for increased
real-world accuracy(33).

Image pre-processing
To train a deep learning model on the fake-food images
we first needed to manually pre-process the images. The
main aim of the pre-processing step is to generate
‘ground-truth’ labels for the food items present in each
image, which are later needed for the supervised learning
of the deep learning model. Ground truth refers to infor-
mation that we know is correct; in the case of food images,
this means that the labels for each of the food items are
reliable. Usually, the simplest approach to generating such
labels is labelling each image with one food class (food
name) and training a deep learning model in such a way
that it returns one text label per image. However, since all
the images from the FFB not only contain multiple food
items, but have over eleven foods on average, such an
approach would be very inaccurate and is therefore not
appropriate for this application.

That is why for generating ground-truth data we needed
to label not just each image, but each food item present in
each image.

As foods often overlap on plates and drinks can obstruct
the view of other items, we labelled each food item on a
pixel level, which means that the result of this step was a
new label image with the same width and height as the
input image, only with a single channel as opposed to
three channels used in RGB images. This label image
contains a class prediction for each individual pixel, so a
‘tomato’ item has all its pixels labelled as ‘tomato’ and its
surrounding pixels are labelled as another class.

Since generating such ground-truth labels without signi-
ficant errors is non-trivial and is one of the main obstacles
when trying to design a pixel-level classification solution,
we manually segmented each food and drink item in each
of the 121 fake-food images. This has resulted in 121 label
images with a total of 1393 different food and drink
items, each belonging to one of the fifty-five food and
drink classes.

After the labelling part, the fake-food data set was
randomly split into training (70% of images), validation
(10%) and testing (20%) subsets to use for the deep
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learning model training such that any image was used in
only one of the subsets. The food objects are the same
across all three subsets, although the selection of food
objects differs from image to image. Finally, four different
data-augmentation steps were performed on the images in
the training subset, as well as their corresponding label
images. These steps included: rotating each image by
90°, 180° and 270°; flipping the image horizontally; adding
random colour noise; and zooming in on the image so
that 25% of the image’s borders were removed(24). It is
important to note that while the other data-augmentation
steps were performed in the same way on both the fake-
food images and the label images, random noise was
introduced only to the food images, as the ground-truth
labels should not change, even in the presence of noise.
The result of the data-augmentation process is therefore
seven variations per fake-food image in the training
subset. In total, the final fake-food data set with the
augmented training subset contains 631 images with 7222
food or drink items (some items were cut off in the
zoomed-in image variants). All the fake-food and label
images have a resolution of 500 pixels× 375 pixels;
the reason for the lower resolution is the considerable
memory requirements of the deep learning approach
used, which is described in the following section.

Deep learning model training
We trained the fake food and drink recognition model using
deep convolutional neural networks, which are a type of
neural network that works in a similar way to human vision:
individual neurons react to overlapping regions in the visual
field. Specifically, we used fully convolutional networks
(FCN) that were introduced in a study by Long et al.(34) and
represent the state-of-the-art for semantic segmentation.
This process segments the input image into separate parts
and then classifies each part into an output class; the
network does that by performing pixel-level classification.
The FCN therefore outputs a pixel map instead of a class
text label, and this pixel map contains predictions from the
model for each individual pixel of the input image, as
opposed to having only one prediction for the entire image.
This is important because, as mentioned in the previous
section, it is the most accurate way to describe all the food
items present in one image. Long et al.(34) introduced three
FCN variants: FCN-32s, FCN-16s and FCN-8s. The FCN-32s
outputs a pixel map based on the predictions from the final
layer of the fully convolutional network, which is the
standard approach for semantic segmentation networks.
The FCN-16s, on the other hand, combines the predictions
from the final layer with those from an earlier layer, which
contains a more detailed representation of the input image,
thus allowing the network to make predictions at a finer
grain. Finally, the FCN-8s considers an additional layer
when making predictions compared with the FCN-16s, and
it is therefore able to segment the input images at the finest
grain. This is why, of all the FCN variants available, the

FCN-8s is the best performing, making it suitable for food
and drink image recognition.

Since it is possible to use deep learning models that are
pre-trained on other data sets as a starting point for the
model training process, we wanted to use an FCN-8s
model that was pre-trained on the PASCAL Visual Object
Classes (PASCAL VOC) data set(35) to decrease the training
time and increase the number of images for training, thus
improving the robustness of the final model. However,
since this data set contains images from only twenty-one
different classes, we needed to modify the FCN-8s net-
work architecture to use it for the recognition of our fifty-
six classes (fifty-five fake-food classes and the background
class). This was done by adding an extra layer at the end
of the deep learning network, which increases the number
of output classes from twenty-one to fifty-six. Doing
this was necessary to take advantage of the pre-trained
network, as otherwise the output layer would have to be
retrained from the start.

For the deep learning model training we used the
popular deep learning framework Caffe, which was
developed by the Berkeley Vision and Learning Center(36),
and the NVIDIA Deep Learning GPU Training System
(NVIDIA DIGITS), which is a graphical user interface built
upon Caffe and provides feedback options during the
model training process(37).

To train the models, we used Adam(38) as the solver.
Solvers are methods that perform updates to deep neural
network parameters in each training epoch with the goal
to minimize the loss function, which is the primary quality
measure while training the models. The solver is therefore
an important part of the deep learning model training
process that tunes the model in such a way that it reacts to
features in the input images and learns to classify them
successfully. Adam is a solver that automatically adapts the
learning rate to the parameters. The learning rate defines
the rate with which the parameters are changed during the
training process; the higher the learning rate, the faster the
model converges to the optimal loss value, which speeds
up the training. However, the learning rate should not be
set too high because the model might then converge to a
worse loss value, or not converge at all. It is therefore
important to choose an appropriate rate, and we achieved
the best results by setting the initial learning rate to 0·0001
and letting Adam automatically adapt this rate during the
training.

Since the FCN perform the classification of each indi-
vidual pixel, their memory requirements are much greater
than those of traditional convolutional neural networks
where large batches of images can be processed at the
same time. Because of this we had to set the software to
process only one image at a time, as one image alone
completely filled the video random access memory of the
graphics processing unit. Additionally, we trained the
model for 100 epochs and then selected the final model at
the epoch where the loss on the validation subset stopped
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decreasing, as that signals the moment when the model
starts overfitting on the training data. For the model
training, we used a single NVIDIA GeForce GTX TITAN X
graphics processing unit.

Measures
To measure the performance of the trained deep learning
model we used the same evaluation measures as Long
et al.(34), since their study showed that these measures are
appropriate to test the FCN models. The measures are
based on the standard pixel accuracy and Intersection
over Union (IU) measures, including the following.
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where ncl is the number of different classes in the ground-
truth labels, nij is the number of pixels of class i predicted
to belong to class j and ti =

P
j nij is the total number of

pixels of class i in the ground-truth labels. We used a
Python implementation of these measures(39).

Food matching
To match the food items recognized in the image to an
FCDB, we decided to use an approach that involved
matching foods by their descriptors and names to achieve
the best possible result. However, because most FCDB are
lacking food descriptors, we first applied the StandFood
method(32) to assign FoodEx2 descriptors to the food items
in a semi-automated way.

The StandFood method consists of three parts. The first
identifies what type of food (raw, derivative, simple or
aggregated composite food) is being analysed. This is the
classification part that involves a machine learning
approach(40). The second part describes the food using
natural language processing(41) combined with probability
theory, which results in the list term or FoodEx2 code for
the food. For each food item that needs to be described
according to FoodEx2, its English name is used. The name
is pre-processed by converting it to lowercase letters.
Part-of-speech (POS) tagging is used to extract its nouns,
adjectives and verbs. The extracted sets are further trans-
formed using lemmatization. Using the extracted nouns,
the FoodEx2 data are searched for the names that consist

of at least one of the extracted nouns. The resulting list
(a subset) is then pre-processed by converting each food
item’s name to lowercase letters, applying POS tagging
to extract the nouns, adjectives and verbs, and using
lemmatization for the extracted sets. Then, the food
item that needs to be described according to FoodEx2 is
matched with each food item in the resulting list and a
weight is assigned to each matching pair. Finally, the pair
with the highest weight is the most relevant one, so it is
returned together with its food category from FoodEx2.
The third part combines the result from the first and the
second part by defining post-processing rules to improve
the result for the classification part.

The first evaluation of the system was made using
532 foods from the Slovenian FCDB and had an accuracy
of 89% for the classification part and 79% for the
description part. However, 21% of instances were not
correctly described, even though some of these instances
were correctly classified. This happens due to the fact that
the food items do not exist in FoodEx2, the food items are
specific to some cultures, or the POS tagging model that is
used for the extraction of the morphological information
does not provide nouns, so the search cannot continue.

For the purposes of the current study we extended the
StandFood method in the second part. The extension
works with cases of food names where nouns cannot be
extracted, so instead of using the POS tagging-probability-
weighted method(42) to find the most relevant match,
it switches to the Levenshtein distance(43), which can be
used as a similarity measure between two textual
descriptions.

The methodology
Figure 1 shows a flowchart of the methodology applied
in the present study. First, the food image recognition
process uses a fake-food image to find the classes (names)
of all the food items in the image. These food names are
then processed by the StandFood method to define the
FoodEx2 descriptors of the recognized food items. Once
both the food names and the descriptors are identified, the
recognized fake foods can be matched with compositional
data from the FCDB. The final result is therefore a fake-
food image standardized with unique descriptors, which
enables the conversion of food intake into nutrient intake
and helps the automated dietary assessment.

Experimental results

Results from food image recognition
The training of the FCN-8s deep learning model took
approximately 37 h of computation on the previously
mentioned graphics processing unit. Classifying a single
image, however, takes significantly less time and com-
puting power, which makes the use of deep learning
models possible even in mobile applications. After the
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training was completed using the training and validation
subsets, the model was run once on the testing subset.
This generated label images for the fake-food images,
which were then compared with the ground-truth label
images using the measures mentioned above. Table 1
contains these results, whereas Fig. 2 contains three
example images (one from each subset) with the corre-
sponding ground-truth and model prediction labels.

As expected, the performance of the FCN-8s model was
better on the training subset than on the other two subsets.
However, the difference is not substantial, which means
the model learned features that generalize well. It is
important to note that this performance was measured on
all classes; this includes the background, which represents
the majority of the pixels. Since the testing subset contains
images new to the deep learning model, we consider the
results on this subset to be the most representative of real-
world performance. Out of these results, we chose pixel
accuracy as the final quality measure, since this measure is

analogous to the classification accuracy in the traditional
convolutional neural networks that classify an entire image
into one class. The difference is that instead of computing
accuracy on an image level, it is computed on a pixel
level. As can be seen from Table 1, the final accuracy for
our FCN-8s deep learning model was therefore 92·18%.
Additionally, the ratios between the quality measures
seem consistent with those of Long et al.(34).

Due to the higher accuracy, the predictions for the
training subset offer more detail than those for the other
two subsets and are very close to the ground truth, with
the only exception being very small food items, such as
onion rings, as can be seen in the training predictions
image in Fig. 2. However, despite the lower amount of
detail, the majority of the predictions for the other two
subsets are still accurate. There are some misclassifications
in the data set, such as parts of the pear and small parts of
the background in the validation predictions image in
Fig. 2, but these errors are rare. A more common

Food image segmentation & recognition

Deep learning
model

StandFood
description

part

Food Ex2 identifier
(list term)

Food category
(Food Ex2)

StandFood
post-processing

part

Food category
(Food Ex2)

Standardization
of foods (Food Ex2)

Food category
(Food Ex2)

StandFood
classification part

Food classes

Fig. 1 Methodology flowchart. The food image recognition process uses a fake-food image to find classes (names) for all food items
in the image. These are then processed by the StandFood method to define the FoodEx2 descriptors of the recognized food items.
Once both the food names and descriptors are identified, the recognized fake foods can be matched with compositional data from
the food composition database. The final result is a fake-food image standardized with unique descriptors, which enables food
intake conversion into nutrient intake and helps the automated dietary assessment
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occurrence that lowers accuracy is when the predictions
do not cover the food and drink items exactly.

Results from food matching and standardization
To support the process of automated dietary assessment,
each fake-food item needs to be automatically matched to
nutrient data from an FCDB.

The result for each fake-food item obtained using the
deep learning model is one of the fifty-five foods (food
classes) for which the model is trained and is used in the
FFB method. In this task we used StandFood to standar-
dize each food class that results from the deep learning
model. For this reason, we used the English names of the
fifty-five food classes. First, for each food class, the clas-
sification part of StandFood is used to obtain its food

category (raw, derivative, simple or aggregated composite
food). The food class is also used with the description part
to obtain its list term (i.e. the FoodEx2 identifier). After
these two parts, their results are combined to improve the
classification of the food class, in case the model used in
the classification part incorrectly classifies it.

Table 2 presents the results from the StandFood
classification part of four randomly selected but correctly
classified food classes, one per food category. The
StandFood classification part has an accuracy of 75%. This
is further improved using the StandFood post-processing
part, but before we used it, the result from the description
part needed to be obtained.

Concerning the second part, Table 2 provides the results
from the StandFood description part of four randomly
selected food classes, one for each food category. As can
be seen, for the first two food classes we have perfect
matches, while for the next two we have multiple choices.
The multiple choices happened because of the food class
description. For the last two examples provided in Table 2,
the food class description is too general, so the StandFood
description part suggests the most relevant matches to
users. For example, for the food class ‘pasta’, the most
relevant matches provided by StandFood are ‘fresh pasta’
or ‘dried pasta’. To distinguish between them in the

Table 1 Results from the FCN-8s deep learning model

Pixel
accuracy

(%)

Mean
accuracy

(%)
Mean
IU (%)

Frequency-weighted
IU (%)

Training 93·43 81·51 72·74 89·09
Validation 90·41 65·12 55·26 84·86
Testing 92·18 70·58 61·85 87·57
All 93·33 80·78 71·99 88·95

IU, Intersection over Union.
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Ground truth Predictions
apple
apple juice
apple tart
banana
banana slice
beans
beetroot
biscuit
broccoli
burger
butter
cappuccino
carrot
cheesecake
chicken
coffee
cola
cream
cucumber
dark bread
fish
french dressing
fries
fruit flan
grapes
herring
italian dressing
ketchup
kiwi
kiwi slice
mayonnaise
meat loaf
mohrenkopf
muffin
natural schnitzel
onion
orange
orange juice
pasta
pear
platzli
potatoes
praline
rice
sacher cake
salad leaf
salmon
sausage
schnitzel
steak
sugar
tea
tomato
water
white bread

Fig. 2 Example images from each of the three subsets (training, validation and testing) of the fake food buffet data set, along with
the corresponding ground-truth label images. The third image column contains predictions from the FCN-8s deep learning model.
Each colour found in the images represents a different food or drink item; these items and their corresponding colours are listed to
the right of the images
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process of automated dietary assessment is a really
important task because they have different nutritional
profiles. It follows that the description of the food classes
that is the result of the deep learning model is the key to
how successful the automatic food matching will be. In the
present study, we evaluated the proposed methodology
using the food classes described in the FFB method. The
StandFood description part has an accuracy of 86%. In the
14% that are not correctly described, this is caused by
some culture-specific foods or food classes for which the
StandFood description part could not find nouns in their
description. This happened because the StandFood
description part uses the extracted nouns from POS tag-
ging for each food class, and to produce its relevant match
the FoodEx2 data are searched for the names that consist
of at least one of the extracted nouns. In cases when
nouns are not found in a food class description, the
description accuracy increases to 93% by using the
extension of the description part. Two randomly selected
examples in the case of fake foods when this happened
are for the food classes ‘French dressing’ and ‘herring’.
After the POS tagging, ‘dressing’ and ‘herring’ were not
recognized as nouns and the StandFood description part
did not provide a result. However, this was solved using
the Levenshtein distance between the food class and
each description presented in the FoodEx2 data. In the
examples of ‘French dressing’ and ‘herring’ this returned
‘salad dressing’ and ‘herrings’.

In addition to the FoodEx2 identifier, the StandFood
description part returns the FoodEx2 food category of the
most relevant match. This is further combined and used in
the post-processing rules together with the food category
obtained by the StandFood classification part to improve

the classification accuracy. Table 3 presents the results of
three randomly selected food classes after the post-
processing part. After the post-processing part, the classi-
fication accuracy increases to 93%.

In addition, if we want to link these food classes to the
FCDB, we need to search the FCDB for their FoodEx2
identifiers. If the FCDB lacks the FoodEx2 identifiers,
StandFood can be used to find these identifiers and to
describe all the food items that exist in it.

Discussion

In the current study we have developed an advanced
methodology for automatic food image recognition and the
standardization of food items that supports the process
of automated dietary assessment. The methodology was
evaluated using food images collected using the FFB
method.

Since this is the first automatic solution for recognizing
the images of fake foods, we consider our results as a
baseline for any future studies. Directly comparing our
pixel accuracy with the classification accuracy results of
other food image recognition solutions(16–27) is not
appropriate because not only were those solutions tested
on different data sets with a different number of food
classes, but there is also a difference in the performance
measures used and in the image variance; fake food
generally exhibits less variance than real food, as real food
can be prepared in multiple ways, which can affect its
visual appearance. There have been some food recog-
nition solutions that apply pixel-level segmentation in the
past, but only one that uses deep learning(22). However,
even that one uses manually defined feature descriptors
for the segmentation phase and deep learning only for the
classification, so to the best of our knowledge the present
study is the first that applies a single deep learning
network for the joint segmentation and classification of
food items. The study’s results provide a base for an
automated dietary assessment solution.

As the food-matching approach also enables the semi-
automated assignment of food descriptors (with respect to
the selected food classification and indexing system, such
as FoodEx2), the linkage of food items with any FCDB
complying with the selected food classification and
indexing system can be performed.

Table 2 Correctly classified food classes using the StandFood
classification part and description of the food classes using the
StandFood description part

Correctly classified food classes using the StandFood classification
part

Food class (result from the
deep learning model)

StandFood food category
(according to FoodEx2)

Broccoli Raw (r)
Sugar Derivative (d)
Pasta Aggregated composite (c)
White bread Simple composite (s)

Description of food classes using the StandFood description part

Food class (result from the
deep learning model)

StandFood relevant FoodEx2
item and its descriptor

Apple Apples (A01DJ)
Biscuit Biscuits (A009V)
Sugar White sugar (A032J)

Brown sugar (A032M)
Flavoured sugar (A032Q)
Sugars and similar (A0BY6)

Pasta Fresh pasta (A007F)
Dried pasta (A007L)

Table 3 StandFood post-processing result of three randomly
selected food classes

Food class (result
from the deep
learning model)

StandFood
classification food
category (according
to FoodEx2)

StandFood post-
processing food category
(according to FoodEx2)

Muffin Raw (r) Aggregated composite (c)
Praline Raw (r) Simple composite (s)
Coffee Derivative (d) Simple composite (s)
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Automation of the recognition of fake foods and
matching them with information from a nutrient database
offers great potential for research. In particular, it would
reduce the effort to collect and analyse the data; that
is, foods selected by participants can be assessed from
photographs instead of by manual handling. In practice,
the simplest approach would be to implement the solution
proposed herein in a smartphone app, which would allow
researchers to automatically gain relevant information
about the selected foods by taking a photograph using the
smartphone’s camera, thus allowing them to instanta-
neously analyse the data. This type of automation would
also reduce the biases introduced by human errors in the
data and would facilitate data standardization, comparison
and exchange between different laboratories using this
research tool. Research questions, such as which food
groups were selected more often, could be investigated
automatically. The matching also allows us to study
patterns in food choice (e.g. which foods are selected in
combination, etc.). It can also facilitate secondary data
analysis on fake-food studies, where photographs have
been taken. Photographs from different experiments and
laboratories could be combined for this.

Future work includes an extension of this methodology
with a tool that automatically measures weight (e.g. food
scape lab), or a technology that automatically estimates
food volume, as this is currently the only missing part in
the process of automated dietary assessment. Although
the predictions from the deep learning model for the
validation and testing images are not as detailed as for the
training ones, they still describe the food and drink items
with an accuracy that could also be sufficient for a food
and drink volume estimation when paired with either a
reference object or a fixed-distance camera.
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Chapter 4

Deep Neural Networks for
Image-Based Dietary Assessment

After validating the food image segmentation approach on fake-food images, the final re-
search step was to develop a similar solution for images of real food and test its performance
on real-world food images. When considering real food, there are generally two types of
food image datasets—datasets containing images, taken in controlled environments, and
real-world datasets. The former are common in other research works and they include
datasets that focus only on certain food types [13], datasets of images, taken in cafeterias
[12], etc. These images are often idealized and a DCNN model trained on them can perform
poorly on real-world images.

Real-world food and drink images can contain several additional issues that images,
captured in controlled environments, generally do not, such as food occlusion, poor image
quality, varying photographing distance, small food item size, etc. It is therefore important
to train the model on real-world images in order to develop an accurate application for
dietary assessment.

Recently, the Food Recognition Challenge [19] was held to evaluate different approaches
to the recognition of multiple food and drink items per image. It introduced a large-scale
dataset of real-world food images that serves as a benchmark in the field. In the scope of
this research work, an approach that uses the hybrid task cascade (HTC) method [29] with
a ResNet [26] backbone was developed. This approach was used on an augmented FRC
dataset by training a model on it, and this model was submitted to the FRC. The HTC
ResNet solution ranked second in the second round of the challenge—results are further
described in the publication below. Additionally, this publication contains implementation
details about the research work, presented in Chapters 2 and 3.

Permission to include the publication “Deep neural networks for image-based dietary
assessment” [18] in this doctoral dissertation was confirmed by the Journal of Visualized
Experiments in an email exchange from 12 June 2021.



Copyright © 2021  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 •  e61906 • Page 1 of 17

Deep Neural Networks for Image-Based Dietary
Assessment
Simon  Mezgec1,  Barbara  Koroušić Seljak2

1 Jožef Stefan International Postgraduate School 2 Computer Systems Department, Jožef Stefan Institute

Corresponding Author

Simon Mezgec

simon.mezgec@gmail.com

Citation

Mezgec, S., Koroušić Seljak, B. Deep

Neural Networks for Image-Based

Dietary Assessment. J. Vis. Exp. (169),

e61906, doi:10.3791/61906 (2021).

Date Published

March 13, 2021

DOI

10.3791/61906

URL

jove.com/video/61906

Abstract

Due to the issues and costs associated with manual dietary assessment approaches,

automated solutions are required to ease and speed up the work and increase its

quality. Today, automated solutions are able to record a person's dietary intake in a

much simpler way, such as by taking an image with a smartphone camera. In this

article, we will focus on such image-based approaches to dietary assessment. For the

food image recognition problem, deep neural networks have achieved the state of the

art in recent years, and we present our work in this field. In particular, we first describe

the method for food and beverage image recognition using a deep neural network

architecture, called NutriNet. This method, like most research done in the early days

of deep learning-based food image recognition, is limited to one output per image,

and therefore unsuitable for images with multiple food or beverage items. That is why

approaches that perform food image segmentation are considerably more robust, as

they are able to identify any number of food or beverage items in the image. We

therefore also present two methods for food image segmentation - one is based on fully

convolutional networks (FCNs), and the other on deep residual networks (ResNet).

Introduction

Dietary assessment is a crucial step in determining

actionable areas of an individual's diet. However, performing

dietary assessment using traditionally manual approaches

is associated with considerable costs. These approaches

are also prone to errors as they often rely on self-reporting

by the individual. Automated dietary assessment addresses

these issues by providing a simpler way to quantify and

qualify food intake. Such an approach can also alleviate

some of the errors present in manual approaches, such as

missed meals, inability to accurately assess food volume,

etc. Therefore, there are clear benefits to automating dietary

assessment by developing solutions that identify different

foods and beverages and quantify food intake1 . These

solutions can also be used to enable an estimation of

nutritional values of food and beverage items (henceforth

'food items'). Consequently, automated dietary assessment

is useful for multiple applications - from strictly medical uses,

such as allowing dietitians to more easily and accurately track
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and analyze their patients' diets, to the usage inside well-

being apps targeted at the general population.

Automatically recognizing food items from images is a

challenging computer vision problem. This is due to foods

being typically deformable objects, and due to the fact that

a large amount of the food item's visual information can

be lost during its preparation. Additionally, different foods

can appear to be very similar to each other, and the same

food can appear to be substantially different on multiple

images2 . Furthermore, the recognition accuracy depends on

many more factors, such as image quality, whether the food

item is obstructed by another item, distance from which the

image was taken, etc. Recognizing beverage items presents

its own set of challenges, the main one being the limited

amount of visual information that is available in an image. This

information could be the beverage color, beverage container

color and structure, and, under optimal image conditions, the

beverage density2 .

To successfully recognize food items from images, it is

necessary to learn features of each food and beverage

class. This was traditionally done using manually-defined

feature extractors3,4 ,5 ,6  that perform recognition based

on specific item features like color, texture, size, etc.,

or a combination of these features. Examples of these

feature extractors include multiple kernel learning4 , pairwise

local features5  and the bag-of-features model6 . Due to

the complexity of food images, these approaches mostly

achieved a low classification accuracy - between 10% and

40%3,4 ,5 . The reason for this is that the manual approach

is not robust enough to be sufficiently accurate. Because

a food item can vary significantly in appearance, it is not

feasible to encompass all these variances manually. Higher

classification accuracy can be achieved with manually-

defined feature extractors when either the number of

food classes is reduced5 , or different image features are

combined6 , thus indicating that there is a need for more

complex solutions to this problem.

This is why deep learning proved to be so effective for

the food image recognition problem. Deep learning, or deep

neural networks, was inspired by biological brains, and allows

computational models composed of multiple processing

layers to automatically learn features through training on a

set of input images7,8 . Because of this, deep learning has

substantially improved the state of the art in a variety of

research fields7 , with computer vision, and subsequently food

image recognition, being one of them2 .

In particular, deep convolutional neural networks (DCNNs)

are most popular for food image recognition - these networks

are inspired by the visual system of animals, where individual

neurons try to gain an understanding of the visual input

by reacting to overlapping regions in the visual field9 . A

convolutional neural network takes the input image and

performs a series of operations in each of the network

layers, the most common of which are convolutional, fully-

connected and pooling layers. Convolutional layers contain

learnable filters that respond to certain features in the input

data, whereas fully-connected layers compose output data

from other layers to gain higher-level knowledge from it. The

goal of pooling layers is to down-sample the input data2 .

There are two approaches to using deep learning models

that proved popular: taking an existing deep neural network

definition10,11 , referred to as a deep learning architecture in

this article, or defining a new deep learning architecture12,13 ,

and training either one of these on a food image dataset.

There are strengths and weaknesses to both approaches

- when using an existing deep learning architecture, an
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architecture that performed well for other problems can

be chosen and fine-tuned for the desired problem, thus

saving time and ensuring that a validated architecture has

been chosen. Defining a new deep learning architecture,

on the other hand, is more time-intensive, but allows the

development of architectures that are specifically made to

take into account the specifics of a problem and thus

theoretically perform better for that problem.

In this article, we present both approaches. For the food

image recognition problem, we developed a novel DCNN

architecture called NutriNet2 , which is a modification of

the well-known AlexNet architecture14 . There are two

main differences compared to AlexNet: NutriNet accepts

512x512-pixel images as input (as opposed to 256x256-

pixel images for AlexNet), and NutriNet has an additional

convolutional layer at the beginning of the neural network.

These two changes were introduced in order to extract as

much information from the recognition dataset images as

possible. Having higher-resolution images meant that there

is more information present on images and having more

convolutional layers meant that additional knowledge could

be extracted from the images. Compared to AlexNet's around

60 million parameters, NutriNet contains less parameters:

approximately 33 million. This is because of the difference in

dimensionality at the first fully-connected layer caused by the

additional convolutional layer2 . Figure 1 contains a diagram

of the NutriNet architecture. The food images that were used

to train the NutriNet model were gathered from the Internet -

the procedure is described in the protocol text.

For the food image segmentation problem, we used two

different existing architectures: fully convolutional networks

(FCNs)15  and deep residual networks (ResNet)16 , both of

which represented the state of the art for image segmentation

when we used them to develop their respective food image

segmentation solutions. There are multiple FCN variants

that were introduced by Long et al.: FCN-32s, FCN-16s

and FCN-8s15 . FCN-32s outputs a pixel map based on the

predictions by the FCN's final layer, whereas the FCN-16s

variant combines these predictions with those by an earlier

layer. FCN-8s considers yet another layer's predictions and

is therefore able to make predictions at the finest grain, which

is why it is suitable for food image recognition. The FCN-8s

that we used was pre-trained on the PASCAL Visual Object

Classes (PASCAL VOC) dataset17  and trained and tested on

images of food replicas (henceforth 'fake food')18  due to their

visual resemblance to real food and due to a lack of annotated

images of real food on a pixel level. Fake food is used

in different behavioral studies and images are taken for all

dishes from all study participants. Because the food contents

of these images are known, it makes the image dataset useful

for deep learning model training. Dataset processing steps

are described in the protocol text.

The ResNet-based solution was developed in the scope

of the Food Recognition Challenge (FRC)19 . It uses the

Hybrid Task Cascade (HTC)20  method with a ResNet-10116

backbone. This is a state-of-the-art approach for the

image segmentation problem that can use different feature

extractors, or backbones. We considered other backbone

networks as well, particularly other ResNet variants such

as ResNet-5016 , but ResNet-101 was the most suitable

due to its depth and ability to represent input images in a

complex enough manner. The dataset used for training the

HTC ResNet-101 model was the FRC dataset with added

augmented images. These augmentations are presented in

the protocol text.
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This article is intended as a resource for machine learning

experts looking for information about which deep learning

architectures and data augmentation steps perform well for

the problems of food image recognition and segmentation,

as well as for nutrition researchers looking to use our

approach to automate food image recognition for use in

dietary assessment. In the paragraphs below, deep learning

solutions and datasets from the food image recognition field

are presented. In the protocol text, we detail how each of

the three approaches was used to train deep neural network

models that can be used for automated dietary assessment.

Additionally, each protocol section contains a description of

how the food image datasets used for training and testing

were acquired and processed.

DCNNs generally achieved substantially better results than

other methods for food image recognition and segmentation,

which is why the vast majority of recent research in the

field is based on these networks. Kawano et al. used

DCNNs to complement manual approaches21  and achieved

a classification accuracy of 72.26% on the UEC-FOOD100

dataset22 . Christodoulidis et al. used them exclusively

to achieve a higher accuracy of 84.90% on a self-

acquired dataset23 . Tanno et al. developed DeepFoodCam

- a smartphone app for food image recognition that

uses DCNNs24 . Liu et al. presented a system that

performs an Internet of Things-based dietary assessment

using DCNNs25 . Martinel et al. introduced a DCNN-based

approach that exploits the specifics of food images26  and

reported an accuracy of 90.27% on the Food-101 dataset27 .

Zhou et al. authored a review of deep learning solutions in the

food domain28 .

Recently, Zhao et al. proposed a network specifically for food

image recognition in mobile applications29 . This approach

uses a smaller 'student' network that learns from a larger

'teacher' network. With it, they managed to achieve an

accuracy of 84% on the UEC-FOOD25630  and an accuracy

of 91.2% on the Food-101 dataset27 . Hafiz et al. used DCNNs

to develop a beverage-only image recognition solution and

reported a very high accuracy of 98.51%31 . Shimoda et al.

described a novel method for detecting plate regions in food

images without the usage of pixel-wise annotation32 . Ciocca

et al. introduced a new dataset containing food items from

20 different food classes in 11 different states (solid, sliced,

creamy paste, etc.) and presented their approach for training

recognition models that are able to recognize the food state,

in addition to the food class33 . Knez et al. evaluated food

image recognition solutions for mobile devices34 . Finally,

Furtado et al. conducted a study on how the human visual

system compares to the performance of DCNNs and found

that human recognition still outperforms DCNNs with an

accuracy of 80% versus 74.5%35 . The authors noted that

with a small number of food classes, the DCNNs perform

well, but on a dataset with hundreds of classes, human

recognition accuracy is higher35 , highlighting the complexity

of the problem.

Despite its state-of-the-art results, deep learning has a major

drawback - it requires a large input dataset to train the model

on. In the case of food image recognition, a large food image

dataset is required, and this dataset needs to encompass as

many different real-world scenarios as possible. In practice

this means that for each individual food or beverage item, a

large collection of images is required, and as many different

items as possible need to be present in the dataset. If there

are not enough images for a specific item in the dataset,

that item is unlikely to be recognized successfully. On the

other hand, if only a small number of items is covered by the
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dataset, the solution will be limited in scope, and only able to

recognize a handful of different foods and beverages.

Multiple datasets were made available in the past. The

Pittsburgh Fast-Food Image Dataset (PFID)3  was introduced

to encourage more research in the field of food image

recognition. The University of Electro-Communications

Food 100 (UEC-FOOD100)22  and University of Electro-

Communications Food 256 (UEC-FOOD256)30  datasets

contain Japanese dishes, expanded with some international

dishes in the case of the UEC-FOOD256 dataset. The

Food-101 dataset contains popular dishes acquired from

a website27 . The Food-5036  and Video Retrieval Group

Food 172 (VireoFood-172)37  datasets are Chinese-based

collections of food images. The University of Milano-Bicocca

2016 (UNIMIB2016) dataset is composed of images of food

trays from an Italian canteen38 . Recipe1M is a large-scale

dataset of cooking recipes and food images39 . The Food-475

dataset40  collects four previously published food image

datasets27,30 ,36 ,37  into one. The Beijing Technology and

Business University Food 60 (BTBUFood-60) is a dataset

of images meant for food detection41 . Recently, the ISIA

Food-500 dataset42  of miscellaneous food images was made

available. In comparison to other publicly available food

image datasets, it contains a large number of images,

divided into 500 food classes, and is meant to advance the

development of multimedia food recognition solutions42 .

Protocol

1. Food image recognition with NutriNet

1. Obtaining the food image dataset

1. Gather a list of different foods and beverages that

will be the outputs of the food image recognition

model. A varied list of popular foods and beverages

is preferred, as that will allow the training of a robust

food image recognition model.

2. Save the food and beverage list in a text file (e.g.,

'txt' or 'csv').
 

NOTE: The text file used by the authors of this

article can be found in the supplemental files

('food_items.txt') and includes a list of 520 Slovenian

food items.

3. Write or download a Python43  script that uses the

Google Custom Search API44  to download images

of each food item from the list and saves them into

a separate folder for each food item.
 

NOTE: The Python script used by the authors of

this article can be found in the supplemental files

('download_images.py'). If this script is used, the

Developer Key (variable 'developerKey', line 8 in the

Python script code) and Custom Search Engine ID

(variable 'cx', line 28 in the Python script code) need

to be replaced with values specific to the Google

account being used.

4. Run the Python script from step 1.1.3 (e.g., with the

command: 'python download_images.py').

2. (Optional) Cleaning the food image dataset

1. Train a food image detection model in the same way

as in section 1.4, except use only two outputs (food,

non-food) as opposed to the list of outputs from step

1.1.1.
 

NOTE: The authors of this article used images

combined from recipe websites and the ImageNet

dataset45  to train the food image detection model.

Since the focus here is on food image recognition

and this is an optional step for cleaning the

recognition dataset, further details are omitted.
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Instead, more details about this approach can be

found in Mezgec et al.2 .

2. Run the detection model from step 1.2.1 on the food

image dataset that is the result of step 1.1.4.

3. Delete every image that was tagged as non-food by

the detection model from step 1.2.1.

4. Manually check the food image dataset for other

erroneous or low-quality images, and for image

duplicates.

5. Delete images found in step 1.2.4.

3. Augmenting the food image dataset

1. Create a new version of each image from the

food image dataset by rotating it by 90° using the

CLoDSA library46  (lines 19 to 21 in the included

Python script).
 

NOTE: The Python script containing all the CLoDSA

commands used by the authors of this article can

be found in a file included in the supplemental files

('nutrinet_augmentation.py'). If this script is used,

the Input Path (variable 'INPUT_PATH', line 8 in

the Python script code) and Output Path (variable

'OUTPUT_PATH', line 11 in the Python script code)

need to be replaced with paths to the desired folders.

2. Create a new version of each image from the food

image dataset by rotating it by 180° using the

CLoDSA library (lines 19 to 21 in the included Python

script).

3. Create a new version of each image from the food

image dataset by rotating it by 270° using the

CLoDSA library (lines 19 to 21 in the included Python

script).

4. Create a new version of each image from the food

image dataset by flipping it horizontally using the

CLoDSA library (lines 23 and 24 in the included

Python script).

5. Create a new version of each image from the food

image dataset by adding random color noise to it

using the CLoDSA library (lines 26 and 27 in the

included Python script).

6. Create a new version of each image from the food

image dataset by zooming into it by 25% using the

CLoDSA library (lines 29 and 30 in the included

Python script).

7. Save images from steps 1.3.1-1.3.6, along with the

original images (lines 16 and 17 in the included

Python script), into a new food image dataset (in

total, 7 variants per food image). This is done by

executing the command in line 32 of the included

Python script.

4. Performing food image recognition

1. Import the food image dataset from step 1.3.7 into

the NVIDIA DIGITS environment47 , dividing the

dataset into training, validation and testing subsets

in the NVIDIA DIGITS user interface.

2. Copy and paste the definition text of the NutriNet

architecture2  into NVIDIA DIGITS as a custom

network.
 

NOTE: The NutriNet architecture definition text

can be found in the supplemental files

('nutrinet.prototxt').

3. (Optional) Define training hyperparameters in the

NVIDIA DIGITS user interface.
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NOTE: Hyperparameters are parameters that

are used to define the training process

prior to its start. The hyperparameters used

by the authors of this article can be

found in a file included in the supplemental

files ('nutrinet_hyperparameters.prototxt'). While

experimentation is needed for each dataset to find

the optimal hyperparameters, the file contains a

hyperparameter configuration which can be copied

into the NVIDIA DIGITS user interface. Furthermore,

NVIDIA DIGITS populates the hyperparameters with

default values which can be used as a baseline. This

step is therefore optional.

4. Run the training of the NutriNet model.

5. After training is complete, take the best-performing

NutriNet model iteration. This model is then used for

testing the performance of this approach.
 

NOTE: There are multiple ways to determine the

best-performing model iteration. A straightforward

way to do this is as follows. NVIDIA DIGITS outputs

a graph of accuracy measures for each training

epoch. Check which epoch achieved the lowest loss

value for the validation subset of the food image

dataset - that model iteration can be considered

best-performing. An optional step in determining the

best-performing model iteration is to observe how

the loss value for the training subset changes from

epoch to epoch and if it starts to drop continuously

while the loss value for the validation subset remains

the same or rises continuously, take the epoch prior

to this drop in training loss value, as that can signal

when the model started overfitting on the training

images.

2. Food image segmentation with FCNs

1. Obtaining the fake-food image dataset

1. Obtain a dataset of fake-food images. Fake-food

images are gathered by researchers conducting

behavioral studies using food replicas.
 

NOTE: The authors of this article received images of

fake food that were collected in a lab environment18 .

2. Manually annotate every food image on a pixel level

- each pixel in the image must contain information

about which food class it belongs to. The result of

this step is one annotation image for each image

from the food image dataset, where each pixel

represents one of the food classes.
 

NOTE: There are many tools to achieve this - the

authors of this article used JavaScript Segment

Annotator48 .

2. Augmenting the fake-food image dataset

1. Perform the same steps as in section 1.3, but only

on images from the training subset of the food image

dataset.
 

NOTE: With the exception of step 1.3.5, all

data augmentation steps need to be performed

on corresponding annotation images as well. If

the script from section 1.3 is used, the Input

Path (variable 'INPUT_PATH', line 8 in the

Python43  script code) and Output Path (variable

'OUTPUT_PATH', line 11 in the Python script code)

need to be replaced with paths to the desired

folders. In addition, set the Problem (variable

'PROBLEM', line 6 in the Python script code) to

'instance_segmentation' and the Annotation Mode

(variable 'ANNOTATION_MODE', line 7 in the
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Python script code) and Output Mode (variable

'OUTPUT_MODE', line 10 in the Python script code)

to 'coco'.

3. Performing fake-food image segmentation

1. Perform the same steps as in section 1.4, with the

exception of step 1.4.2. In place of that step, perform

steps 2.3.2 and 2.3.3.
 

NOTE: Hyperparameters are parameters that are

used to define the training process prior to its

start. The training hyperparameters used by the

authors of this article for the optional step 1.4.3

can be found in a file included in the supplemental

files ('fcn-8s_hyperparameters.prototxt'). While

experimentation is needed for each dataset to

find the optimal set of hyperparameters, the file

contains a hyperparameter configuration which

can be copied into the NVIDIA DIGITS47  user

interface. Furthermore, NVIDIA DIGITS populates

the hyperparameters with default values which can

be used as a baseline.

2. Copy and paste the definition text of the FCN-8s

architecture15  into the NVIDIA DIGITS environment

as a custom network.
 

NOTE: The FCN-8s architecture definition text is

publicly available on GitHub49 .

3. Enter the path to the pre-trained FCN-8s model

weights into the NVIDIA DIGITS user interface.
 

NOTE: These model weights were pre-trained on the

PASCAL VOC dataset17  and can be found on the

Internet49 .

3. Food image segmentation with HTC ResNet

1. Obtaining the food image dataset

1. Download the food image dataset from the FRC

website19 .

2. Augmenting the food image dataset

1. Perform steps 1.3.1-1.3.4.
 

NOTE: The Python43  script containing all the

CLoDSA46  commands used by the authors of

this article can be found in a file included

in the supplemental files ('frc_augmentation.py').

If this script is used, the Input Path (variable

'INPUT_PATH', line 8 in the Python script code) and

Output Path (variable 'OUTPUT_PATH', line 11 in

the Python script code) need to be replaced with

paths to the desired folders.

2. Create a new version of each image from the food

image dataset by adding Gaussian blur to it using

the CLoDSA library (lines 26 and 27 in the included

Python script).

3. Create a new version of each image from the food

image dataset by sharpening it using the CLoDSA

library (lines 29 and 30 in the included Python script).

4. Create a new version of each image from the food

image dataset by applying gamma correction to it

using the CLoDSA library (lines 32 and 33 in the

included Python script).

5. Save images from steps 3.2.1-3.2.4, along with the

original images (lines 16 and 17 in the included

Python script), into a new food image dataset (in

total, 8 variants per food image). This is done by

executing the command in line 35 of the included

Python script.

6. Save images from steps 3.2.2-3.2.4, along with the

original images (lines 16 and 17 in the included
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Python script), into a new food image dataset (in

total, 4 variants per food image). This is done by

deleting lines 19 to 24 of the included Python script

and executing the command in line 35.

3. Performing food image segmentation

1. Modify the existing HTC20  ResNet-101

architecture16  definition from the MMDetection

library50  in sections 'model settings' and 'dataset

settings' of the architecture definition file so that it

accepts the food image datasets from steps 3.1.1,

3.2.5 and 3.2.6.

2. (Optional) Modify the HTC ResNet-101 architecture

definition from step 3.3.1 to define training

hyperparameters: batch size in section 'dataset

settings', solver type and learning rate in section

'optimizer', learning policy in section 'learning policy'

and number of training epochs in section 'runtime

settings' of the architecture definition file.
 

NOTE: The modified HTC ResNet-101 architecture

definition file can be found in the supplemental

files ('htc_resnet-101.py'). Hyperparameters are

parameters that are used to define the training

process prior to its start. While experimentation is

needed for each dataset to find the optimal set

of hyperparameters, the file already contains a

hyperparameter configuration which can be used

without modification. This step is therefore optional.

3. Run the training of the HTC ResNet-101

model on the food image dataset from step

3.1.1 using the MMDetection library (e.g., with

the command: 'python mmdetection/tools/train.py

htc_resnet-101.py').

4. After the training from step 3.3.3 is complete,

take the best-performing HTC ResNet-101 model

iteration and fine-tune it by running the next phase of

training on the food image dataset from step 3.2.5.
 

NOTE: There are multiple ways to determine the

best-performing model iteration. A straightforward

way to do this is as follows. The MMDetection

library outputs values of accuracy measures for each

training epoch in the command line interface. Check

which epoch achieved the lowest loss value for the

validation subset of the food image dataset - that

model iteration can be considered best-performing.

An optional step in determining the best-performing

model iteration is to observe how the loss value for

the training subset changes from epoch to epoch

and if it starts to drop continuously while the loss

value for the validation subset remains the same or

rises continuously, take the epoch prior to this drop

in training loss value, as that can signal when the

model started overfitting on the training images.

5. After the training from step 3.3.4 is complete,

take the best-performing HTC ResNet-101 model

iteration and fine-tune it by running the next phase of

training on the food image dataset from step 3.2.6.
 

NOTE: See note for step 3.3.4.

6. After the training from step 3.3.5 is complete,

take the best-performing HTC ResNet-101 model

iteration and fine-tune it by again running the next

phase of training on the food image dataset from

step 3.2.5.
 

NOTE: See note for step 3.3.4.

7. After the training from step 3.3.6 is complete,

take the best-performing HTC ResNet-101 model
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iteration. This model is then used for testing the

performance of this approach.
 

NOTE: See note for step 3.3.4. Steps 3.3.3-3.3.7

yielded the best results for the purposes defined by

the authors of this article. Experimentation is needed

for each dataset to find the optimal sequence of

training and data augmentation steps.

Representative Results

NutriNet was tested against three popular deep learning

architectures of the time: AlexNet14 , GoogLeNet51  and

ResNet16 . Multiple training parameters were also tested for

all architectures to define the optimal values2 . Among these

is the choice of solver type, which determines how the loss

function is minimized. This function is the primary quality

measure for training neural networks as it is better suited for

optimization during training than classification accuracy. We

tested three solvers: Stochastic Gradient Descent (SGD)52 ,

Nesterov's Accelerated Gradient (NAG)53  and the Adaptive

Gradient algorithm (AdaGrad)54 . The second parameter is

batch size, which defines the number of images that are

processed at the same time. The depth of the deep learning

architecture determined the value of this parameter, as

deeper architectures require more space in the GPU memory

- the consequence of this approach was that the memory was

completely filled with images for all architectures, regardless

of depth. The third parameter is learning rate, which defines

the speed with which the neural network parameters are

being changed during training. This parameter was set in

unison with the batch size, as the number of concurrently

processed images dictates the convergence rate. AlexNet

models were trained using a batch size of 256 images and a

base learning rate of 0.02; NutriNet used a batch size of 128

images and a rate of 0.01; GoogLeNet 64 images and a rate

of 0.005; and ResNet 16 images and a rate of 0.00125. Three

other parameters were fixed for all architectures: learning rate

policy (step-down), step size (30%) and gamma (0.1). These

parameters jointly describe how the learning rate is changing

in every epoch. The idea behind this approach is that the

learning rate is being gradually lowered to fine-tune the model

the closer it gets to the optimal loss value. Finally, the number

of training epochs was also fixed to 150 for all deep learning

architectures2 .

The best result among all the parameters tested that NutriNet

achieved was a classification accuracy of 86.72% on the

recognition dataset, which was around 2% higher than the

best result for AlexNet and slightly higher than GoogLeNet's

best result. The best-performing architecture overall was

ResNet (by around 1%), however the training time for ResNet

is substantially higher compared to NutriNet (by a factor

of approximately five), which is important if models are

continuously re-trained to improve accuracy and the number

of recognizable food items. NutriNet, AlexNet and GoogLeNet

achieved their best results using the AdaGrad solver,

whereas ResNet's best model used the NAG solver. NutriNet

was also tested on the publicly available UNIMIB2016 food

image dataset38 . This dataset contains 3,616 images of 73

different food items. NutriNet achieved a recognition accuracy

of 86.39% on this dataset, slightly outperforming the baseline

recognition result of the authors of the dataset, which was

85.80%. Additionally, NutriNet was tested on a small dataset

of 200 real-world images of 115 different food and beverage

items, where NutriNet achieved a top-5 accuracy of 55%.

To train the FCN-8s fake-food image segmentation model, we

used Adam55  as the solver type, as we found that it performed

optimally for this task. The base learning rate was set very

low - to 0.0001. The reason for the low number is the fact
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that only one image could be processed at a time, which is

a consequence of the pixel-level classification process. The

GPU memory requirements for this approach are significantly

greater than image-level classification. The learning rate thus

had to be set low so that the parameters were not being

changed too fast and converge to less optimal values. The

number of training epochs was set to 100, while the learning

rate policy, step size and gamma were set to step-down, 34%

and 0.1, respectively, as these parameters produced the most

accurate models.

Accuracy measurements of the FCN-8s model were

performed using the pixel accuracy measure15 , which

is analogous to the classification accuracy of traditional

deep learning networks, the main difference being that the

accuracy is computed on the pixel level instead of on the

image level:

where PA is the pixel accuracy measure, nij is the number of

pixels from class i predicted to belong to class j and ti = Σj

nij is the total number of pixels from class i in the ground-

truth labels1 . In other words, the pixel accuracy measure

is computed by dividing correctly predicted pixels by the

total number of pixels. The final accuracy of the trained

FCN-8s model was 92.18%. Figure 2 shows three example

images from the fake-food image dataset (one from each of

the training, validation and testing subsets), along with the

corresponding ground-truth and model prediction labels.

The parameters to train the HTC20  ResNet-101 model for

food image segmentation were set as follows: the solver type

used was SGD because it outperformed other solver types.

The base learning rate was set to 0.00125 and the batch size

to 2 images. The number of training epochs was set to 40 per

training phase, and multiple training phases were performed

- first on the original FRC dataset without augmented images,

then on the 8x-augmented and 4x-augmented FRC dataset

multiple times in an alternating fashion, each time taking the

best-performing model and fine-tuning it in the next training

phase. More details on the training phases can be found in

section 3.3 of the protocol text. Finally, the step-down learning

policy was used, with fixed epochs for when the learning rate

decreased (epochs 28 and 35 for the first training phase). An

important thing to note is that while this sequence of training

phases produced the best results in our testing in the scope

of the FRC, using another dataset might require a different

sequence to produce optimal results.

This ResNet-based solution for food image segmentation was

evaluated using the following precision measure19 :

where P is precision, TP is the number of true positive

predictions by the food image segmentation model, FP is the

number of false positive predictions and IoU is Intersection

over Union, which is computed with this equation:

where Area of Overlap represents the number of predictions

by the model that overlap with the ground truth, and Area

of Union represents the total number of predictions by the

model together with the ground truth, both on a pixel level and

for each individual food class. Recall is used as a secondary

measure and is calculated in a similar way, using the following

formula19 :
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where R is recall and FN is the number of false negative

predictions by the food image segmentation model. The

precision and recall measures are then averaged across all

classes in the ground truth. Using these measures, our model

achieved an average precision of 59.2% and an average

recall of 82.1%, which ranked second in the second round

of the Food Recognition Challenge19 . This result was 4.2%

behind the first place and 5.3% ahead of the third place in

terms of the average precision measure. Table 1 contains the

results for the top-4 participants in the competition.

 

Figure 1: Diagram of the NutriNet deep neural network architecture. This figure has been published in Mezgec et al.2 .

Please click here to view a larger version of this figure.
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Figure 2: Images from the fake-food image dataset. Original images (left), manually-labelled ground-truth labels (middle)

and predictions from the FCN-8s model (right). This figure has been published in Mezgec et al.1 . Please click here to view a

larger version of this figure.

Team Name Placement Average Precision Average Recall

rssfete 1 63.4% 88.6%

simon_mezgec 2 59.2% 82.1%

arimboux 3 53.9% 73.5%

latentvec 4 48.7% 71.1%

Table 1: Top-4 results from the second round of the Food Recognition Challenge. Average precision is taken as the

primary performance measure and average recall as a secondary measure. Results are taken from the official competition

leaderboard19 .

Supplemental Files. Please click here to download this File.

Discussion

In recent years, deep neural networks have been validated

multiple times as a suitable solution for recognizing food

images10,11 ,12 ,21 ,23 ,25 ,26 ,29 ,31 ,33 . Our work presented in

this article serves to further prove this1,2 . The single-output

food image recognition approach is straightforward and can

be used for simple applications where images with only one

food or beverage item are expected2 .
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The food image segmentation approach seems particularly

suitable for recognizing food images in general, without any

restriction on the number of food items1 . Because it works

by classifying each individual pixel of the image, it is able to

not only recognize any number of food items in the image,

but also specify where a food item is located, as well as how

large it is. The latter can then be used to perform food weight

estimation, particularly if used with either a reference object

or a fixed-distance camera.

There has been some work done regarding the availability

of food image datasets3,22 ,27 ,30 ,36 ,37 ,38 ,39 ,40 ,41 ,42 , and

we hope more will be done in the future, particularly

when it comes to aggregating food image datasets from

different regions across the world, which would enable more

robust solutions to be developed. Currently, the accuracy

of automatic food image recognition solutions has not yet

reached human-level accuracy35 , and this is likely in large

part due to the usage of food image datasets of insufficient

size and quality.

In the future, our goal will be to further evaluate the developed

procedures on real-world images. In general, datasets in this

field often contain images taken in controlled environments

or images that were manually optimized for recognition. This

is why it is important to gather a large and diverse real-

world food image dataset to encompass all the different

food and beverage items that individuals might want to

recognize. The first step towards this was provided by the

Food Recognition Challenge, which included a dataset of

real-world food images19 , but further work needs to be done

to validate this approach on food images from all around the

world and in cooperation with dietitians.
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Chapter 5

Discussion

The research work, presented in this doctoral dissertation, started with the two hypothe-
ses, listed in Chapter 1. The goal of the first hypothesis was to define a novel DCNN
architecture that would be more accurate for the task of food and drink image recognition.
The NutriNet architecture was designed as a modification of the AlexNet architecture in
the scope of the research work, described in Chapter 2 [4]. The latter was modified by
adding a convolutional layer to the beginning of the neural network and by increasing the
resolution of the input images to 512 × 512 pixels. With that, more information could be
gathered from food images, which resulted in a higher classification accuracy compared to
AlexNet. This is likely a consequence of the visual complexity of food and drink items,
which require more information to differentiate between different items. Because of the
difference in the number of parameters between AlexNet and NutriNet, NutriNet is also
considerably faster to train.

Testing results showed that NutriNet achieved the second-best classification accuracy
on the self-acquired dataset. The only architecture that slightly outperformed it was
ResNet. However, the training time also needs to be considered, and in that regard, Nu-
triNet outperformed all other tested DCNN architectures when employing equal resolution
of input images for all architectures—GoogLeNet and ResNet by a factor of five, and
AlexNet by a factor of around 1.5. The difference in training time is substantial, and
consequently NutriNet achieved the best ratio of classification accuracy to training time.
NutriNet thus provides a viable alternative to the other tested architectures for food image
recognition applications where the DCNN model is regularly retrained with new images.

Additionally, NutriNet outperformed the baseline result on the UNIMIB2016 food im-
age dataset [12]. To the best of the author’s knowledge, the solution for food image recog-
nition that uses NutriNet was the first to recognize drinks in addition to food items, and
the 520 different food and drink items that make up the training dataset was significantly
higher than contemporary approaches [12], [30], [31]. Due to the encouraging performance
of the NutriNet architecture, the first hypothesis is concluded with the finding that the
development of a new DCNN architecture for food and drink image recognition that is
more accurate than the architecture it is based on is both possible and reasonable.

The second hypothesis, defined in Chapter 1, states that a DCNN architecture can be
used to perform the joint segmentation and classification of food and drink images. This
was confirmed by the development of a solution that uses FCNs to segment and classify
fake-food images [17], which is described in Chapter 3. Due to its high accuracy, the
FCN-based approach can be used by researchers who employ food replicas to more quickly
identify the food and drink items that participants choose in behavioral studies. In turn,
this has the potential to shorten the time needed to analyze the results of such studies and
accelerate progress in the field.
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To the best of the author’s knowledge, this solution was the first for automated food
replica recognition, making it a potential benchmark for future research work in the field.
Comparison with real-food recognition systems is not appropriate due to the difference in
food item variance—real food exhibits a far greater difference in visual appearance from
one image to the next, whereas participants in fake-food studies generally choose from an
array of items that do not vary in appearance. Additionally, due to the design of FCNs
and to the best of the author’s knowledge, the approach was the first to jointly perform
the segmentation and classification of food images in a single DCNN architecture.

As part of the Food Recognition Challenge [19], a real-food image segmentation and
classification approach was developed [18]. This approach is presented in Chapter 4, and
it can be considered an upgrade of the fake-food approach due to the increased complexity
of recognizing real food as opposed to fake food, therefore serving to further confirm the
second hypothesis. The solution is based on the HTC ResNet method, and it achieved
second place in the second round of the challenge based on the precision measure, defined
in the challenge. The result was 4.2% behind the first-place team and 5.3% ahead of the
third-place team [19]. In total, 142 submissions were evaluated in the FRC judging system
as part of this research work, and the largest increase in precision was achieved by using
extensive data augmentation to generate additional image variants that could potentially
appear in the real world. The challenge was organized in such a way that the evaluation
of submissions was performed on a hidden testing subset of the FRC dataset [19] in order
to limit the possibility of reverse-engineering a solution.

Using the FRC solution, a mobile application was developed to facilitate dietary as-
sessment. The application is called Vid (Slovene for “vision”), and it was developed for the
Android mobile operating system [32]. It works in the following way: first, the user takes
a photograph with their camera application of choice. Then, the application performs the
segmentation and classification of all food and drink items present in the image. Once this
process is finished, the segmented image and the names of the recognized food and drink
items are presented to the user, and they are saved into their food diary, along with the
corresponding time and date. The food image recognition model that is used in Vid was
taken from the FRC submission, which means it was trained on an augmented version of
the official food image dataset of the second round of the FRC [19]. Figure 5.1 contains
screenshots of Vid recognizing food items in an image.

Because Vid has no limitations regarding the number of food and drink items in any
given image, it is considerably more robust and requires much less effort on the part of
the user than the mobile application, developed using the NutriNet solution, which is
described in Chapter 2 [4]. This makes it substantially more appropriate for real-world
use in dietary assessment than the previously-developed application. Apart from Vid,
research into mobile applications for food image recognition has also been performed by
other research groups [8], [33]. The performance of Vid cannot easily be compared to other
mobile solutions, as they were trained and tested on different food image datasets.

In the future, the main goal will be to upgrade the Vid application and the solution,
presented in Chapter 4, by training the DCNN model on additional real-world food and
drink images. This would allow it to recognize more food and drink items, as well as
achieve a higher precision. Additionally, food volume estimation can be implemented in
the application to automate that aspect of food tracking as well. Finally, with the goal of
achieving an even higher precision, the predictions from the DCNN model can be tailored
to each individual user by favoring food items that the user photographed in the past, or
are similar to those items. This approach would need to be researched to conclude whether
it would indeed lead to more accurate results.

The research work, performed in the scope of this doctoral dissertation, resulted in
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Figure 5.1: Screenshots of the Vid mobile application. The first screenshot from the left
displays the photographing process, the second screenshot displays the segmented image,
the third screenshot displays a thumbnail of the segmented image, along with the names
of the recognized food and drink items, whereas the fourth screenshot displays the user’s
food diary.

the publications, included in Chapters 2, 3, and 4, along with part of the publication,
mentioned in Chapter 1 [20]. These publications were met with a positive response by
the scientific community, as they were cited a total of 138 times at the time of writing,
according to Google Scholar [16]. Several researchers from globally established research
institutions cited these works, such as Imperial College London [34], Tsinghua University
[35], Cornell University [36], Columbia University [37], University of California, San Diego
[38], KU Leuven [39], and many others. Additionally, researchers from some of the largest
technology companies in the world cited the above publications, including Google [36], [40],
Amazon [41], Facebook [42], and Samsung [43], [44].

The largest portion of citations was achieved by the publication, included in Chapter 2
[4], with 111, according to Google Scholar [16]. This is partially due to the fact that it
was published first, but also possibly due to the fact that it introduced a novel DCNN
architecture for food image recognition, which is characterized by a fast training time
relative to its classification accuracy on food images. This, along with the fact that it was
the first solution to recognize images of drinks, made it a significant part of the research
into more effective food image recognition approaches, which is evidenced by the number
of citations.

The second-highest cited work is the publication that was published second [17], and
is included in Chapter 3. It achieved 24 citations, according to Google Scholar [16]. The
other two publications [18], [20] were published very recently—both in 2021—so they only
have a total of 3 citations, according to Google Scholar [16]. A direct result of the research
work is also the finalist selection for the 2019 DSM Bright Science Award [21] and the high
FRC placement [19], as described above.
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Chapter 6

Conclusions

The research on food and drink image detection, recognition, and segmentation using
deep convolutional neural networks was performed over the span of multiple years, and it
culminated in this doctoral dissertation. It can be broken down into three phases: first,
there was the development of single-output food image recognition solutions [4], followed
by the development of fake-food image segmentation approaches [17], and finally, there was
the development of real-food image segmentation solutions, with validation on real-world
images of food and drink items [18]. Apart from the research findings and publications,
one of the final results is a mobile application called Vid, which is able to automatically
recognize food and drink items by simply taking a photograph with a smartphone. This
application uses the best developed solution, which is the HTC ResNet food and drink
image segmentation and classification approach [18].

Individual research steps and solutions are described in the chapters, preceding this
one. Overall, the main conclusions from researching the defined hypotheses are that food
image recognition can be performed in multiple ways, and that new approaches can be
developed that improve upon previous solutions. Food image recognition with a single
output is suitable only for more straightforward approaches as it is limited to one food
or drink item per image, thus limiting its real-world usability. Food image segmentation
is significantly more promising, although it is very challenging to acquire a food image
dataset suitable for this purpose, as most food images are not annotated on a pixel level,
which is a requirement for fine-grained segmentation.

In this regard, the Food Recognition Challenge [19] was an important milestone, as, to
the best of the author’s knowledge, it offered the first publicly available large-scale dataset
of real-world food images, annotated on a pixel level. This allows the evaluation and
comparison of recognition solutions on real-world food images, which is needed to accelerate
progress towards more accurate applications for dietary assessment. These applications
are able to alleviate issues with manual methods and speed up dietary assessment, making
them valuable in the pursuit of improving public health through improved diets.

The research work, presented in this dissertation, serves to prove the viability of using
DCNNs for food image recognition. It contributed multiple approaches to this research
field [4], [17], [18], and the dissertation conclusions are in line with other research [45]. By
achieving the second-best result in the second round of the aforementioned FRC, it was
also proven to be competitive with other state-of-the-art approaches in the field [19].

There are two major paths forward for the food image recognition field. First, as many
different food image datasets as possible need to be gathered, cleaned, and annotated. The
size and diversity of the datasets that are used to train DCNN models are crucial to achieve
a high classification accuracy. Therefore, if food image datasets are acquired, processed,
merged, and standardized on a global scale, it has the potential to allow for the training
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of significantly more accurate DCNN models that might even exceed human recognition
in the future, which is not yet the case [46]. Work has been done in this direction already
[47], but considerably more needs to be done to reach optimal solutions.

Second, because food image segmentation solutions can classify each pixel of the image,
the result, apart from the names of food and drink items, is also the number of pixels that
corresponds to each item. Consequently, it is possible to estimate food volume using this
approach. Due to the changing photographing distance, doing so directly is a challenge,
and it often relies on estimations based on objects of standard size that are present in the
image. These can include cutlery, plates, glasses, etc. Another approach to food volume
estimation is to use a reference object, although that requires significantly more effort on
the part of the individual. Food volume estimation solutions are already being researched
[48], but further work needs to be done to achieve a satisfactory accuracy on the large
number of food items that will presumably be found in future food image datasets.

In conclusion, food image recognition is a very promising field that has the poten-
tial to substantially transform how dietary assessment is performed in practice. Perhaps
even more significantly, because it lowers the barrier to entry, it can potentially enable
the dietary assessment of a large portion of the general population, thus contributing to
improvements in public health.
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